论文标题

投影性的核芯戈伦斯坦平坦和丁射射击模块

Projectively coresolved Gorenstein flat and Ding projective modules

论文作者

Iacob, Alina

论文摘要

我们提供了必要和足够的条件,以便为投影固定的Gorenstein Flat模块,$ \ Mathcal {pgf} $(分别分别为项目固定的Gorenstein $ \ Mathcal {b} $ flat flat flat flat flat flat {投影模块($ \ Mathcal {dp})$。我们证明$ \ Mathcal {pgf} = \ Mathcal {dp} $,并且仅当每个Ding投射模块都是Gorenstein平坦的。例如,如果环$ r $连贯,就是这种情况。我们包括一个示例,以表明连贯性是足够的,但不是必需的条件,以便拥有$ \ Mathcal {pgf} = \ Mathcal {dp} $。我们还表明,$ \ Mathcal {pgf} = \ Mathcal {dp} $上的任何环$ r $的有限弱Gorenstein Global Dimension(此条件也足够,但不是必需的)。我们证明,如果Ding投影模块的类别($ \ Mathcal {dp} $)正在覆盖,那么RING $ R $是完美的。我们表明,在连贯的环$ r $上,匡威也保持着。我们还提供了必要和足够的条件,以便拥有$ \ Mathcal {pgf} = \ Mathcal {gp} $,其中$ \ Mathcal {gp} $是Gorenstein Projective模块的类。

We give necessary and sufficient conditions in order for the class of projectively coresolved Gorenstein flat modules, $\mathcal{PGF}$, (respectively that of projectively coresolved Gorenstein $\mathcal{B}$ flat modules, $\mathcal{PGF}_{\mathcal{B}}$) to coincide with the class of Ding projective modules ($\mathcal{DP})$. We show that $\mathcal{PGF} = \mathcal{DP}$ if and only if every Ding projective module is Gorenstein flat. This is the case if the ring $R$ is coherent for example. We include an example to show that the coherence is a sufficient, but not a necessary condition in order to have $\mathcal{PGF} = \mathcal{DP}$. We also show that $\mathcal{PGF} = \mathcal{DP}$ over any ring $R$ of finite weak Gorenstein global dimension (this condition is also sufficient, but not necessary). We prove that if the class of Ding projective modules, $\mathcal{DP}$, is covering then the ring $R$ is perfect. And we show that, over a coherent ring $R$, the converse also holds. We also give necessary and sufficient conditions in order to have $\mathcal{PGF} = \mathcal{GP}$, where $\mathcal{GP}$ is the class of Gorenstein projective modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源