论文标题
PSC-NET:学习零件的空间同时出现,以封闭行人检测
PSC-Net: Learning Part Spatial Co-occurrence for Occluded Pedestrian Detection
论文作者
论文摘要
检测行人,尤其是在重型闭塞下,是众多现实应用程序的一个具有挑战性的计算机视觉问题。本文引入了一种新的方法,称为PSC-NET,用于遮挡人行检测。所提出的PSC-NET包含一个专用模块,该模块旨在通过图形卷积网络(GCN)明确捕获不同行人身体部位的彼此内部和部分内部的共发生信息。间和组内的共发生信息都有助于改善处理不同闭塞水平的特征表示形式,从部分到严重的闭塞不等。我们的PSC-NET利用了行人的拓扑结构,不需要基于部分的注释或其他可见边界框(VBB)信息来学习零件空间共发生。全面的实验是在两个具有挑战性的数据集上进行的:CityPersons和Caltech数据集。拟议的PSC-NET在两者上都达到了最先进的检测性能。在cityperosns测试集的重型(\ textbf {ho})集合中,我们的PSC-net在与先进的骨架,输入量表和不使用其他VBB监管的情况下,在对数平均损失率上获得了4.0 \%的绝对增益。此外,PSC-NET从加州理工学院(\ textbf {ho})测试集上的对数平均速率方面将最新的最新时间从37.9提高到34.8。
Detecting pedestrians, especially under heavy occlusions, is a challenging computer vision problem with numerous real-world applications. This paper introduces a novel approach, termed as PSC-Net, for occluded pedestrian detection. The proposed PSC-Net contains a dedicated module that is designed to explicitly capture both inter and intra-part co-occurrence information of different pedestrian body parts through a Graph Convolutional Network (GCN). Both inter and intra-part co-occurrence information contribute towards improving the feature representation for handling varying level of occlusions, ranging from partial to severe occlusions. Our PSC-Net exploits the topological structure of pedestrian and does not require part-based annotations or additional visible bounding-box (VBB) information to learn part spatial co-occurrence. Comprehensive experiments are performed on two challenging datasets: CityPersons and Caltech datasets. The proposed PSC-Net achieves state-of-the-art detection performance on both. On the heavy occluded (\textbf{HO}) set of CityPerosns test set, our PSC-Net obtains an absolute gain of 4.0\% in terms of log-average miss rate over the state-of-the-art with same backbone, input scale and without using additional VBB supervision. Further, PSC-Net improves the state-of-the-art from 37.9 to 34.8 in terms of log-average miss rate on Caltech (\textbf{HO}) test set.