论文标题

系外行星子纳普的大气起源

Atmosphere Origins for Exoplanet Sub-Neptunes

论文作者

Kite, Edwin S., Fegley Jr., Bruce, Schaefer, Laura, Ford, Eric

论文摘要

带有2 $ r _ {\ oplus} $ <$ r $ <3 $ r _ {\ oplus} $的行星和轨道周期$ <$ 100 d很丰富;这些亚北极分球星人尚不清楚。例如,$开普勒$ sub-neptunes可能与他们的气氛接触深岩浆海洋,但对岩浆对大气的影响知之甚少。在这里,我们使用基本模型研究了这种效果,假设挥发物与岩浆平衡为$ t $ \ sim $ 3000 k。对于我们的Fe-Mg-Si-Si-O-H模型系统,我们发现岩浆与大气和挥发物之间的化学反应与岩浆中的溶解都很重要。因此,岩浆很重要。对于H,大多数痣都进入岩浆,因此H $ _2 $积聚和H $ _2 $损失模型的质量目标比通常假设的重量更重。岩浆氧化态的已知跨度可以产生半径相同但总挥发性质量的亚北极固体变化20倍。因此,行星半径是大气组成的代理,但不能用于总挥发性含量。这种氧化还原多样性退化可以通过测量大气平均分子量而破坏。我们强调h $ _2 $由星云燃料供应,但也考虑固体h $ _2 $ o。我们发现,将h $ _2 $ o添加到fe中可能无法制造足够的h $ _2 $来解释子纳普radii,因为$> $> $ 10 $^3 $^$ -km厚的大气层具有高平均分子量。岩浆 - 大气平衡的假设链接可观察到的物品,例如大气h $ _2 $ o/h $ _2 $ _2 $比率与岩浆Feo内容和行星形成过程。我们的模型的准确性受到特定于子核的实验(实验室和/或数值)的限制。我们主张进行此类实验。

Planets with 2 $R_{\oplus}$ < $R$ < 3 $R_{\oplus}$ and orbital period $<$100 d are abundant; these sub-Neptune exoplanets are not well understood. For example, $Kepler$ sub-Neptunes are likely to have deep magma oceans in contact with their atmospheres, but little is known about the effect of the magma on the atmosphere. Here we study this effect using a basic model, assuming that volatiles equilibrate with magma at $T$ $\sim$ 3000 K. For our Fe-Mg-Si-O-H model system, we find that chemical reactions between the magma and the atmosphere and dissolution of volatiles into the magma are both important. Thus, magma matters. For H, most moles go into the magma, so the mass target for both H$_2$ accretion and H$_2$ loss models is weightier than is usually assumed. The known span of magma oxidation states can produce sub-Neptunes that have identical radius but with total volatile masses varying by 20-fold. Thus, planet radius is a proxy for atmospheric composition but not for total volatile content. This redox diversity degeneracy can be broken by measurements of atmosphere mean molecular weight. We emphasise H$_2$ supply by nebula gas, but also consider solid-derived H$_2$O. We find that adding H$_2$O to Fe probably cannot make enough H$_2$ to explain sub-Neptune radii because $>$10$^3$-km thick outgassed atmospheres have high mean molecular weight. The hypothesis of magma-atmosphere equilibration links observables such as atmosphere H$_2$O/H$_2$ ratio to magma FeO content and planet formation processes. Our model's accuracy is limited by the lack of experiments (lab and/or numerical) that are specific to sub-Neptunes; we advocate for such experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源