论文标题
以下500mv Cu/sio $ _2 $/w memristor中的生物模拟突触可塑性和学习
Bio-mimetic Synaptic Plasticity and Learning in a sub-500mV Cu/SiO$_2$/W Memristor
论文作者
论文摘要
人们认为,人脑的计算效率源于通过局部尖峰触发的学习规则(例如尖峰时序依赖性可塑性(STDP))对神经元的平行信息处理能力进行的平行信息处理能力。用来触发神经元信号传导和突触适应的极低工作电压(约100美元,$ MV)被认为是大脑功率效率的关键原因。我们证明了在两端Cu/sio $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $/w的可行性,能够在$ 500 \ $ 500 \,$ mV下操作。我们分析了设备中电导更新的状态依赖性性质,以开发现象学模型。使用该模型,我们评估了此类设备在监督学习条件下生成精确的尖峰时间的潜力,并在无监督的学习环境中从MNIST数据集中对手写数字进行分类。结果构成了创建能够在片上学习的低功率突触设备迈出的有希望的步骤。
The computational efficiency of the human brain is believed to stem from the parallel information processing capability of neurons with integrated storage in synaptic interconnections programmed by local spike triggered learning rules such as spike timing dependent plasticity (STDP). The extremely low operating voltages (approximately $100\,$mV) used to trigger neuronal signaling and synaptic adaptation is believed to be a critical reason for the brain's power efficiency. We demonstrate the feasibility of spike triggered STDP behavior in a two-terminal Cu/SiO$_2$/W memristive device capable of operating below $500\,$mV. We analyze the state-dependent nature of conductance updates in the device to develop a phenomenological model. Using the model, we evaluate the potential of such devices to generate precise spike times under supervised learning conditions and classify handwritten digits from the MNIST dataset in an unsupervised learning setting. The results form a promising step towards creating a low power synaptic device capable of on-chip learning.