论文标题

具有矩阵值未知的多层网络中的推断

Inference in Multi-Layer Networks with Matrix-Valued Unknowns

论文作者

Pandit, Parthe, Sahraee-Ardakan, Mojtaba, Rangan, Sundeep, Schniter, Philip, Fletcher, Alyson K.

论文摘要

我们考虑从对输出的观察来推断随机多层神经网络的输入和隐藏变量的问题。每一层中的隐藏变量表示为矩阵。此问题适用于通过深层生成模型,多任务和混合回归以及学习某些两层神经网络的类别的信号恢复。通过扩展最近开发的多层矢量近似消息传递(ML-VAMP)算法来处理矩阵值未知数,提出了用于MAP和MMSE推理的统一近似算法。结果表明,拟议的多层矩阵VAMP(ML-MAT-VAMP)算法的性能可以在某个随机的大型系统限制中准确预测,其中未知数量的尺寸$ n \ times n \ times d $随着$ n \ rightArlow \ rightArlow \ rightArlow \ rightarrow \ iffty $ d $的固定。在两层神经网络学习问题中,这种缩放对应于输入特征和训练样品数量生长到无穷大的情况,但隐藏节点的数量保持固定。该分析可以对学习的参数和测试误差进行精确预测。

We consider the problem of inferring the input and hidden variables of a stochastic multi-layer neural network from an observation of the output. The hidden variables in each layer are represented as matrices. This problem applies to signal recovery via deep generative prior models, multi-task and mixed regression and learning certain classes of two-layer neural networks. A unified approximation algorithm for both MAP and MMSE inference is proposed by extending a recently-developed Multi-Layer Vector Approximate Message Passing (ML-VAMP) algorithm to handle matrix-valued unknowns. It is shown that the performance of the proposed Multi-Layer Matrix VAMP (ML-Mat-VAMP) algorithm can be exactly predicted in a certain random large-system limit, where the dimensions $N\times d$ of the unknown quantities grow as $N\rightarrow\infty$ with $d$ fixed. In the two-layer neural-network learning problem, this scaling corresponds to the case where the number of input features and training samples grow to infinity but the number of hidden nodes stays fixed. The analysis enables a precise prediction of the parameter and test error of the learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源