论文标题

使用卷积神经网络进行螺旋实时MRI脱毛

Deblurring for Spiral Real-Time MRI Using Convolutional Neural Networks

论文作者

Lim, Yongwan, Narayanan, Shrikanth S, Nayak, Krishna S

论文摘要

由于其时间效率,因此在实时MRI中首选螺旋出现。螺旋形的基本局限性是由于离子异常而导致的图像模糊,在空气组织边界处,图像质量显着降低。在这里,我们演示了一种简单的基于CNN的脱毛方法,用于人类语音生产的螺旋实时MRI。我们显示基于CNN的DeBlurring能够恢复模糊的声带组织边界,而无需特定于考试的场图。 Deblurring性能优于当前自动校准的方法,并且略微不如理想重建,并具有完美的田间图。

Spiral acquisitions are preferred in real-time MRI because of their time efficiency. A fundamental limitation of spirals is image blurring due to off-resonance, which degrades image quality significantly at air-tissue boundaries. Here, we demonstrate a simple CNN-based deblurring method for spiral real-time MRI of human speech production. We show the CNN-based deblurring is capable of restoring blurred vocal tract tissue boundaries, without a need for exam-specific field maps. Deblurring performance is superior to a current auto-calibrated method, and slightly inferior to ideal reconstruction with perfect knowledge of the field maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源