论文标题
在半导体中以高度重复速率中的几个循环灯波驱动的电流
Few-cycle lightwave-driven currents in a semiconductor at high repetition rate
论文作者
论文摘要
当在介电或半导体材料上撞击强烈的循环光脉冲时,电场将与固体非线性相互作用,从而驱动相干电流。超短载体 - 固相稳定波形的不对称性导致电荷的净转移,可以通过宏观电动接触导线进行测量。这种效应以低重复速率的极短,单周期激光脉冲的开创性,从而限制了其对超快电子的适用性。我们使用几乎是持续时间和重复速率的几乎两倍的固定激光脉冲的氮化壳中的轻波驱动电流,比以前的工作高两个数量级。我们使用从分散 - 扫描测量结果中检索到的精确的激光脉冲形状,通过基于干扰多光子过渡的理论模型成功模拟了我们的实验数据。实质上提高了重复率并放松脉冲持续时间的约束标志着向光波驱动的电子设备的应用迈出的重要一步。
When an intense, few-cycle light pulse impinges on a dielectric or semiconductor material, the electric field will interact nonlinearly with the solid, driving a coherent current. An asymmetry of the ultrashort, carrier-envelope-phase-stable waveform results in a net transfer of charge, which can be measured by macroscopic electric contact leads. This effect has been pioneered with extremely short, single-cycle laser pulses at low repetition rate, thus limiting the applicability of its potential for ultrafast electronics. We investigate lightwave-driven currents in gallium nitride using few-cycle laser pulses of nearly twice the duration and at a repetition rate two orders of magnitude higher than in previous work. We successfully simulate our experimental data with a theoretical model based on interfering multiphoton transitions, using the exact laser pulse shape retrieved from dispersion-scan measurements. Substantially increasing the repetition rate and relaxing the constraint on the pulse duration marks an important step forward towards applications of lightwave-driven electronics.