论文标题

在普及动态的预测模型中量化不确定性

Quantifying Uncertainty in a Predictive Model for Popularity Dynamics

论文作者

O'Brien, Joseph D., Aleta, Alberto, Moreno, Yamir, Gleeson, James P.

论文摘要

霍克斯流程近年来引起了人们的关注,因为它适合描述在线信息级联的行为。在这里,我们提出了一种完全可探讨的方法,可以分析描述霍克斯过程中事件数量的分布,与纯粹的经验研究或基于仿真的模型相比,该方法可以分析过程参数对级联动力学的影响。我们表明,提出的理论还允许在时间窗口中观察到给定数量事件后事件的未来分布进行预测。我们的结果是通过差分方程方法得出的,以达到一般分支过程的管理方程。我们通过对此类过程的广泛模拟确认我们的理论发现。这项工作为对自我激发过程进行更完整的分析提供了基础,这些过程控制了通过许多通信平台传播信息的传播,包括有可能在置信度限制内预测级联动力学。

The Hawkes process has garnered attention in recent years for its suitability to describe the behavior of online information cascades. Here, we present a fully tractable approach to analytically describe the distribution of the number of events in a Hawkes process, which, in contrast to purely empirical studies or simulation-based models, enables the effect of process parameters on cascade dynamics to be analyzed. We show that the presented theory also allows predictions regarding the future distribution of events after a given number of events have been observed during a time window. Our results are derived through a differential-equation approach to attain the governing equations of a general branching process. We confirm our theoretical findings through extensive simulations of such processes. This work provides the basis for more complete analyses of the self-exciting processes that govern the spreading of information through many communication platforms, including the potential to predict cascade dynamics within confidence limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源