论文标题
双量量子傅立叶变换和纠缠受循环对称性保护
Two-qubit quantum Fourier transform and entanglement protected by circulant symmetry
论文作者
论文摘要
我们提出了一种使用具有循环对称性的哈密顿量实现两量量子傅立叶变换(QFT)的方法。重要的是,循环矩阵的特征向量是傅立叶模式,只要保留循环对称性,就不取决于汉密尔顿元素的大小。 QFT实施依赖于从每个自旋产物状态到相应量子傅里叶叠加状态的绝热过渡。我们表明,在离子陷阱中,人们可以通过调整被困离子之间的自旋旋转相互作用来获得带有循环对称性的哈密顿量。我们提出了数值结果,这些结果表明可以通过现实的实验资源获得很高的保真度。我们还描述了如何使用“快捷方式到可绝化”字段加速门。
We propose a method for the realization of the two-qubit quantum Fourier transform (QFT) using a Hamiltonian which possesses the circulant symmetry. Importantly, the eigenvectors of the circulant matrices are the Fourier modes and do not depend on the magnitude of the Hamiltonian elements as long as the circulant symmetry is preserved. The QFT implementation relies on the adiabatic transition from each of the spin product states to the respective quantum Fourier superposition states. We show that in ion traps one can obtain a Hamiltonian with the circulant symmetry by tuning the spin-spin interaction between the trapped ions. We present numerical results which demonstrate that very high fidelity can be obtained with realistic experimental resources. We also describe how the gate can be accelerated by using a "shortcut-to-adiabaticity" field.