论文标题

线索:高能量物理学中高粒度热量计的快速平行聚类算法

CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics

论文作者

Rovere, Marco, Chen, Ziheng, Di Pilato, Antonio, Pantaleo, Felice, Seez, Chris

论文摘要

高粒度量热量计的挑战之一,例如为覆盖HL-LHC的CMS-2期升级中的端盖区域而构建的挑战之一是,在重组重建阶段,大量通道会导致计算负载的激增。在本文中,我们提出了一种快速且完全可行的基于密度的聚类算法,该算法针对高占用场景进行了优化,其中簇的数量远大于集群中的平均命中次数。该算法使用网格空间索引来快速查询邻居及其正时尺度,并与所考虑范围内的命中次数线性缩放。我们还展示了CPU和GPU实现的性能的比较,证明了在高能物理学中的异质计算时代,算法并行化的力量。

One of the challenges of high granularity calorimeters, such as that to be built to cover the endcap region in the CMS Phase-2 Upgrade for HL-LHC, is that the large number of channels causes a surge in the computing load when clustering numerous digitised energy deposits (hits) in the reconstruction stage. In this article, we propose a fast and fully-parallelizable density-based clustering algorithm, optimized for high occupancy scenarios, where the number of clusters is much larger than the average number of hits in a cluster. The algorithm uses a grid spatial index for fast querying of neighbours and its timing scales linearly with the number of hits within the range considered. We also show a comparison of the performance on CPU and GPU implementations, demonstrating the power of algorithmic parallelization in the coming era of heterogeneous computing in high energy physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源