论文标题

在lefschetz Thimbles上模拟仪表理论

Simulating gauge theories on Lefschetz thimbles

论文作者

Pawlowski, Jan M., Scherzer, Manuel, Schmidt, Christian, Ziegler, Felix P. G., Ziesché, Felix

论文摘要

Lefschetz Thimbles最近被提出,作为对蒙特卡洛模拟中复杂的动作问题(符号问题)的可能解决方案。在这里,我们与复杂的耦合$β$讨论了纯的Abelian仪表理论,并应用了广义Lefschetz Thimbles的概念。我们建议模拟有关切向歧管与顶针的结合的理论。我们构建了一种局部大都市型算法,该算法被限制在特定的切线歧管上。我们还讨论了如何从连续的转与切线歧管开始,可以通过重新持续方法考虑。我们在1+1个维度上演示了$ u(1)$量规理论的算法,并研究残留符号问题。

Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $β$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the theory on the union of the tangential manifolds to the thimbles. We construct a local Metropolis-type algorithm, that is constrained to a specific tangential manifold. We also discuss how, starting from this result, successive subleading tangential manifolds can be taken into account via a reweighting approach. We demonstrate the algorithm on $U(1)$ gauge theory in 1+1 dimensions and investigate the residual sign problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源