论文标题
歧视普遍确定多路复用网络的重建
Discrimination universally determines reconstruction of multiplex networks
论文作者
论文摘要
网络重建对于理解网络系统的动态行为至关重要。与相应的汇总网络相比,许多由具有各种相互作用的多路复用网络建模的系统,显示出完全不同的动力学行为。不幸的是,在许多情况下,只有对网络层的汇总拓扑和部分观察结果,这增加了重建多重网络的紧迫需求。我们通过基于期望最大化框架来重建多路复用层结构来开发数学和计算工具来填补这一空白。重建精度取决于各种因素,例如部分观察和网络特征,从而限制了我们预测和分配观察的能力。令人惊讶的是,通过使用均值场近似,我们发现整合所有这些因素的歧视指标普遍决定了重建的准确性。这一发现使我们能够设计最佳策略,以分配固定预算来推导部分观察结果,从而促进多路复用网络的最佳重建。为了进一步评估我们的方法的性能,我们预测结构外,还可以在多重网络上进行动态行为,包括渗透,随机步行和扩散过程。最后,将我们的方法应用于从生物,运输和社会领域绘制的经验多重网络上,证实了理论分析。
Network reconstruction is fundamental to understanding the dynamical behaviors of the networked systems. Many systems, modeled by multiplex networks with various types of interactions, display an entirely different dynamical behavior compared to the corresponding aggregated network. In many cases, unfortunately, only the aggregated topology and partial observations of the network layers are available, raising an urgent demand for reconstructing multiplex networks. We fill this gap by developing a mathematical and computational tool based on the Expectation-Maximization framework to reconstruct multiplex layer structures. The reconstruction accuracy depends on the various factors, such as partial observation and network characteristics, limiting our ability to predict and allocate observations. Surprisingly, by using a mean-field approximation, we discovered that a discrimination indicator that integrates all these factors universally determines the accuracy of reconstruction. This discovery enables us to design the optimal strategies to allocate the fixed budget for deriving the partial observations, promoting the optimal reconstruction of multiplex networks. To further evaluate the performance of our method, we predict beside structure also dynamical behaviors on the multiplex networks, including percolation, random walk, and spreading processes. Finally, applying our method on empirical multiplex networks drawn from biological, transportation, and social domains, corroborate the theoretical analysis.