论文标题

非线性和拓扑

Nonlinearity and Topology

论文作者

Saxena, A., Kevrekidis, P. G., Cuevas-Maraver, J.

论文摘要

非线性和拓扑的相互作用导致许多物理系统的许多新颖和新兴的特性,例如手性磁铁,列液晶,玻璃体凝结,凝结,光子学,高能量物理学等。它还会导致多种拓扑缺陷,例如唯一的,孤立的,涡流,涡流,希望,希望,几个命名,几个几个命名,几乎没有命名。这些非平地缺陷本身之间的互动和碰撞是一个引起人们极大的关注的话题。曲率和潜在的几何形状也会影响这些缺陷的形状,相互作用和行为。可以使用例如,例如,例如,可以研究此类属性。 Bogomolnyi分解。此相互作用的某些应用,例如在非肾脏光子和拓扑材料中,诸如狄拉克和韦伊尔半法的拓扑材料也被阐明。

The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源