论文标题

基于超声熵图和注意门控U-NET的乳房质量分割

Breast mass segmentation based on ultrasonic entropy maps and attention gated U-Net

论文作者

Byra, Michal, Jarosik, Piotr, Dobruch-Sobczak, Katarzyna, Klimonda, Ziemowit, Piotrzkowska-Wroblewska, Hanna, Litniewski, Jerzy, Nowicki, Andrzej

论文摘要

我们提出了一种基于深度学习的新方法,以超声(US)成像中的乳房质量分割。与使用美国图像的常用分割方法相比,我们的方法基于定量熵参数图。为了细分乳房,我们利用了关注的通心U-NET卷积神经网络。根据从269个乳房收集的原始美国信号生成美国图像和熵图。使用美国图像和熵图分别开发了分割网络,并在81个乳房的测试集上进行了评估。根据熵地图训练的U-NET的注意力NET达到了平均骰子得分为0.60(中位数为0.71),而对于使用US图像训练的模型,我们获得了平均骰子得分为0.53(中位数为0.59)。我们的工作提出了使用定量的美国参数图进行乳房质量分割的可行性。获得的结果表明,提供有关局部组织散射特性的信息的美国参数图可能更适合于乳腺质量分割方法的开发,而不是常规的美国图像。

We propose a novel deep learning based approach to breast mass segmentation in ultrasound (US) imaging. In comparison to commonly applied segmentation methods, which use US images, our approach is based on quantitative entropy parametric maps. To segment the breast masses we utilized an attention gated U-Net convolutional neural network. US images and entropy maps were generated based on raw US signals collected from 269 breast masses. The segmentation networks were developed separately using US image and entropy maps, and evaluated on a test set of 81 breast masses. The attention U-Net trained based on entropy maps achieved average Dice score of 0.60 (median 0.71), while for the model trained using US images we obtained average Dice score of 0.53 (median 0.59). Our work presents the feasibility of using quantitative US parametric maps for the breast mass segmentation. The obtained results suggest that US parametric maps, which provide the information about local tissue scattering properties, might be more suitable for the development of breast mass segmentation methods than regular US images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源