论文标题

使用深神经网络的时间序列数据中的多标签预测

Multi-label Prediction in Time Series Data using Deep Neural Networks

论文作者

Zhang, Wenyu, Jha, Devesh K., Laftchiev, Emil, Nikovski, Daniel

论文摘要

本文解决了多维时间序列数据的多标签预测性故障分类问题。尽管在文献中已经对故障(事件)检测问题进行了彻底的研究,但大多数最先进的技术无法可靠地预测所需的未来视野中的故障(事件)。在这些类型的问题的最一般设置中,可以从有限的已知集合中分配多个时间序列的一个或多个数据样本,并且任务是预测在所需的时间范围内发生故障的可能性。这种类型的问题通常伴随着强大的类失衡,其中某些类仅由几个样本表示。重要的是,在许多问题的应用中,例如故障预测和预测性维护,正是这些罕见的类别最引起了人们的关注。为了解决这个问题,本文提出了一种通用方法,该方法利用具有新成本功能的多标签复发性神经网络,可以加入不平衡的类中的学习。提出的算法在两个公共基准数据集上进行了测试:来自PHM Society数据挑战的工业工厂数据集和人类活动识别数据集。将结果与用于时间序列分类的最新技术进行比较,并使用F1分数,精度和召回进行评估。

This paper addresses a multi-label predictive fault classification problem for multidimensional time-series data. While fault (event) detection problems have been thoroughly studied in literature, most of the state-of-the-art techniques can't reliably predict faults (events) over a desired future horizon. In the most general setting of these types of problems, one or more samples of data across multiple time series can be assigned several concurrent fault labels from a finite, known set and the task is to predict the possibility of fault occurrence over a desired time horizon. This type of problem is usually accompanied by strong class imbalances where some classes are represented by only a few samples. Importantly, in many applications of the problem such as fault prediction and predictive maintenance, it is exactly these rare classes that are of most interest. To address the problem, this paper proposes a general approach that utilizes a multi-label recurrent neural network with a new cost function that accentuates learning in the imbalanced classes. The proposed algorithm is tested on two public benchmark datasets: an industrial plant dataset from the PHM Society Data Challenge, and a human activity recognition dataset. The results are compared with state-of-the-art techniques for time-series classification and evaluation is performed using the F1-score, precision and recall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源