论文标题
bimodule图从一个Unital $ c^*$ - 代数到其$ C^*$ - subergebra和强烈的莫里塔等价
Bimodule maps from a unital $C^*$-algebra to its $C^*$-subalgebra and strong Morita equivalence
论文作者
论文摘要
令$ a \ subset c $和$ b \ subset d $是Unital $ c^*$ - 代数的Unital夹杂物。令$ {} _ a \ mathbf {b} _a(c,a)$(resp。$ {} _ b \ mathbf {b} _b(d,b)$)是所有有限制的$ a $ a $ a $ a-bimodule的空间(resp。$ b $ b $ b $ b $ b $ b $ c $ c $ $ c $ $ d $ d $ d。我们认为$ a \ subset c $和$ b \ subset d $非常相同。 We shall show that there is an isometric isomorphism $f$ of ${}_A \mathbf{B}_A (C, A)$ onto ${}_B \mathbf{B}_B (D, B)$ and we shall study on basic properties about $f$.
Let $A \subset C$ and $B \subset D$ be unital inclusions of unital $C^*$-algebras. Let ${}_A \mathbf{B}_A (C, A)$ (resp. ${}_B \mathbf{B}_B (D, B)$) be the space of all bounded $A$-bimodule (resp. $B$-bimodule) linear maps from $C$ (resp. $D$) to $A$ (resp. $B$). We suppose that $A \subset C$ and $B \subset D$ are strongly Morita equivalent. We shall show that there is an isometric isomorphism $f$ of ${}_A \mathbf{B}_A (C, A)$ onto ${}_B \mathbf{B}_B (D, B)$ and we shall study on basic properties about $f$.