论文标题
在2D侧向异质结处的量子等离子体光致发光增强的Picoscale控制
Picoscale control of quantum plasmonic photoluminescence enhancement at 2D lateral heterojunction
论文作者
论文摘要
由于光电设备中的潜在应用,二维(2D)材料和异质结构最近引起了广泛的关注。但是,由于空间分辨率有限,异质结的光学特性尚未正确表征,需要超出衍射极限的纳米光学表征。在这里,我们使用具有Picoscale Tip-sample-sample距离控制的非金属基底物上的尖端增强光致发光(TEPL)光谱研究了横向单层MOS2-WS2异质结构。通过将等离子Au涂层的Ag尖端放在异质结处,我们观察到由于经典的近场机制和跨连接的电荷转移而导致的三个数量级光致发光(PL)增强。与距离依赖性TEPL测量值的Picoscale精度分别用于研究大约320 pm的尖端样本距离上方和下方的经典和量子隧道状态。量子等离子体效应通常会限制由于尖端的近场耗竭而导致的最大信号增强。我们在2D侧向异质结处表现出更为复杂的行为,其中热电子隧穿导致MOS2的PL淬灭,同时增加WS2的PL。我们的模拟显示了与实验一致的一致性,揭示了与各种制度相对应的参数和增强因子的范围。横向连接的可控光子响应可用于新型纳米版。
Two-dimensional (2D) materials and heterostructures have recently gained wide attention due to potential applications in optoelectronic devices. However, the optical properties of the heterojunction have not been properly characterized due to the limited spatial resolution, requiring nano-optical characterization beyond the diffraction limit. Here, we investigate the lateral monolayer MoS2-WS2 heterostructure using tip-enhanced photoluminescence (TEPL) spectroscopy on a non-metallic substrate with picoscale tip-sample distance control. By placing a plasmonic Au-coated Ag tip at the heterojunction, we observed more than three orders of magnitude photoluminescence (PL) enhancement due to the classical near-field mechanism and charge transfer across the junction. The picoscale precision of the distance-dependent TEPL measurements allowed for investigating the classical and quantum tunneling regimes above and below the ~320 pm tip-sample distance, respectively. Quantum plasmonic effects usually limit the maximum signal enhancement due to the near-field depletion at the tip. We demonstrate a more complex behavior at the 2D lateral heterojunction, where hot electron tunneling leads to the quenching of the PL of MoS2, while simultaneously increasing the PL of WS2. Our simulations show agreement with the experiments, revealing the range of parameters and enhancement factors corresponding to various regimes. The controllable photoresponse of the lateral junction can be used in novel nanodevices.