论文标题
使用数据科学了解北大西洋的气候不稳定性和复杂的互动
Understanding North Atlantic Climate Instabilities and Complex Interactions using Data Science
论文作者
论文摘要
北大西洋振荡(NAO)指数是海平面大气压力变异性的一种度量,对北美和北欧的天气模式产生了重大影响。 NAO值为负(正)表示这些地区的冷空气暴发和风暴发生(减少)。 NAO是多种气候因素的产物,它表现出具有海面温度(SST)和海冰范围(SIE)的复杂动力学。在这项研究中,我们采用了一种数据驱动的方法来探索NAO,SST和SIE之间的复杂相互作用,从而揭示了这些气候变量之间扎根于积极反馈回路的关键不稳定性。我们的统计机器学习方法研究了融化北极SIE和SST对NAO的影响,从而了解北大西洋地区的天气模式。偏度分析在各个时间间隔内会产生NAO的负偏度 - 每天,每周和每月。这种偏斜,再加上NAO的平均零固定性质,突显了系统的不稳定性。为了捕获这些动力学,我们制定了贝叶斯Granger-Causal动力学线性模型,该模型有效地更新了随着时间的推移依赖预测变量的变量关系。这些发现强调了即将来临的严重不稳定,这表明在北美东部和北欧的寒冷气候更频繁地发生,理论表明气候变化显着。通过深入研究NAO,SST和SIE的复杂反馈机制,我们的研究增强了我们对气候变异性的理解,从而促进了对即将到来的气候变化的更加知情的观点。
The North Atlantic Oscillation (NAO) index, a measure of sea-level atmospheric pressure variability, holds significant influence over weather patterns in North America and Northern Europe. A negative (positive) NAO value signifies increased cold air outbreaks and storm occurrences (reduced occurrences) in these regions. NAO, a product of multiple climate factors, demonstrates intricate dynamics with sea surface temperature (SST) and sea ice extent (SIE). In this study, we adopt a data-driven approach to explore the complex interplay between NAO, SST, and SIE, revealing a critical instability rooted in positive feedback loops among these climate variables. Our statistical machine learning methodology examines the impacts of melting Arctic SIE and rising SST on NAO, thereby understanding the weather patterns across the North Atlantic region. The skewness analysis yields a negative skewness in NAO across various time intervals -- daily, weekly, and monthly. This skewness, coupled with NAO's mean zero stationary nature, accentuates system instability. To capture these dynamics, we formulate a Bayesian Granger-causal dynamic linear model, which effectively updates the predictor-dependent variable relationship over time. The findings underscore an impending critical instability, indicative of more frequent occurrences of intensely cold climates in eastern North America and northern Europe, theory signifies a notable climate shift. By delving into the intricate feedback mechanisms of NAO, SST, and SIE, our study enhances our comprehension of climate variability, fostering a more informed perspective on the imminent climate changes that lie ahead.