论文标题

计算换向器长度很难

Computing commutator length is hard

论文作者

Heuer, Nicolaus

论文摘要

$ g \ in [g,g] $的换向器长度$ cl_g(g)$是组$ g $的换向器子组,是表达$ g $作为其产品所需的最少的换向器。 如果$ g $是一个非亚洲自由组,则给出一个整数$ n \ in \ mathbb {n} $和[g,g] $中的元素$ g \ in [g,g] $确定$ cl_g(g)\ leq n $是np-complete的决策问题。因此,除非p = np,否则没有算法在多项式时间内计算$ cl_g(g)$,以$ | g | $,$ g $的单词lordlength。对于缩回非亚伯自由群体的群体,例如非亚伯利亚右角Artin群体,此陈述仍然是正确的。 我们将通过将换向器长度与单词的\ emph {cyclak block互换距离}联系起来来显示这些语句,我们也表明这是NP完整的。

The commutator length $cl_G(g)$ of an element $g \in [G,G]$ in the commutator subgroup of a group $G$ is the least number of commutators needed to express $g$ as their product. If $G$ is a non-abelian free groups, then given an integer $n \in \mathbb{N}$ and an element $g \in [G,G]$ the decision problem which determines if $cl_G(g) \leq n$ is NP-complete. Thus, unless P=NP, there is no algorithm that computes $cl_G(g)$ in polynomial time in terms of $|g|$, the wordlength of $g$. This statement remains true for groups which have a retract to a non-abelian free group, such as non-abelian right-angled Artin groups. We will show these statements by relating commutator length to the \emph{cyclic block interchange distance} of words, which we also show to be NP-complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源