论文标题
非相关性重力及其与重要的耦合
Non-Relativistic Gravity and its Coupling to Matter
论文作者
论文摘要
我们研究了与物质相关的一般相对论的非相对论扩张。这是通过在分析上以$ 1/c^2 $分析的标准和物质字段来完成的,其中$ c $是光速。为了执行此扩展,从静态的vielbein和空间度量标准方面,可以很方便地重写一般相对论。该扩展可以进行协变和脱壳。我们研究了爱因斯坦 - 希尔伯特(Einstein-Hilbert)动作的扩展,直到近代到领先的顺序。我们将其与不同形式的物质相结合:点颗粒,完美的流体,标量场(包括Schrödinger-Newton方程的脱壳)和电动力学(其电力和磁性极限)。我们发现物质的作用对于了解牛顿 - 卡丹几何形状的特性至关重要,而牛顿 - 卡丹几何形状的特性是从度量的扩展中出现的。事实证明,这是确定允许哪种类型的时钟形式的问题,即我们有绝对时间或恒定时间横向表面的全局叶子。最后,我们研究了多种非偏好性重力的溶液,并结合了完美的流体。这包括Schwarzschild几何形状,用于流体恒星的Tolman-Oppenheimer-Volkoff溶液,FLRW宇宙学解决方案和反DE安静的时间。
We study the non-relativistic expansion of general relativity coupled to matter. This is done by expanding the metric and matter fields analytically in powers of $1/c^2$ where $c$ is the speed of light. In order to perform this expansion it is shown to be very convenient to rewrite general relativity in terms of a timelike vielbein and a spatial metric. This expansion can be performed covariantly and off shell. We study the expansion of the Einstein-Hilbert action up to next-to-next-to-leading order. We couple this to different forms of matter: point particles, perfect fluids, scalar fields (including an off-shell derivation of the Schrödinger-Newton equation) and electrodynamics (both its electric and magnetic limits). We find that the role of matter is crucial in order to understand the properties of the Newton-Cartan geometry that emerges from the expansion of the metric. It turns out to be the matter that decides what type of clock form is allowed, i.e. whether we have absolute time or a global foliation of constant time hypersurfaces. We end by studying a variety of solutions of non-relativistic gravity coupled to perfect fluids. This includes the Schwarzschild geometry, the Tolman-Oppenheimer-Volkoff solution for a fluid star, the FLRW cosmological solutions and anti-de Sitter spacetimes.