论文标题

限制的热量和拓扑超导

Constrained thermalisation and topological superconductivity

论文作者

Nulty, Stephen, Vala, Jiri, Meidan, Dganit, Kells, Graham

论文摘要

我们检查了在相互作用且无序的Kitaev模型中进行的热化/定位权衡,特别介绍了多体定位的签名是否可以与系统拓扑阶段共存。 Using methods applicable to finite size systems, (e.g. the generalized one-particle density matrix, eigenstate entanglement entropy, inverse zero modes coherence length) we identify a regime of parameter space in the vicinity of the non-interacting limit where topological superconductivity survives together with a significant violation of Eigenstate-Thermalisation-Hypothesis (ETH) at finite energy-densities.我们进一步确定了von Neumann纠缠熵的异常行为,这可以归因于由于反映了近似粒子保护法的高能量特征状态之间缺乏杂交而导致的类似细胞化的效应。在这种制度中,系统倾向于将广义的吉布斯合奏(与大规范合奏相对)进行热度。中度疾病倾向于将系统驱动到更强的杂交和标准的热合奏,并在违反近似保护法的情况下。这种行为被牢固的疾病截止,这阻碍了许多身体影响,从而违反了ETH并减少纠缠熵。

We examine the thermalisation/localization trade off in an interacting and disordered Kitaev model, specifically addressing whether signatures of many-body localization can coexist with the systems topological phase. Using methods applicable to finite size systems, (e.g. the generalized one-particle density matrix, eigenstate entanglement entropy, inverse zero modes coherence length) we identify a regime of parameter space in the vicinity of the non-interacting limit where topological superconductivity survives together with a significant violation of Eigenstate-Thermalisation-Hypothesis (ETH) at finite energy-densities. We further identify an anomalous behaviour of the von Neumann entanglement entropy which can be attributed to the prethermalisation-like effects that occur due to lack of hybridization between high-energy eigenstates reflecting an approximate particle conservation law. In this regime the system tends to thermalise to a generalised Gibbs ensemble (as opposed to the grand canonical ensemble). Moderate disorder tends to drive the system towards stronger hybridization and a standard thermal ensemble, where the approximate conservation law is violated. This behaviour is cutoff by strong disorder which obstructs many body effects thus violating ETH and reducing the entanglement entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源