论文标题

一种简单的扩散界面方法,用于基于降低的Baer-Nunziato模型,围绕移动的固体移动固体的可压流方法

A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model

论文作者

Kemm, Friedemann, Gaburro, Elena, Thein, Ferdinand, Dumbser, Michael

论文摘要

在本文中,我们提出了一个新的扩散界面模型,以模拟围绕固定形状的固定和移动的固体体的数值模拟。假定固体在没有任何弹性特性的情况下移动刚体。该模型是可压缩多相流的七个方程式BAER-NUNZIATO模型的简化情况,并导致具有非保守产品的非线性双曲线系统。简单地通过标量场指定固体的几何形状,该标量场表示每个控制体积中存在的流体的体积分数。这允许在简单统一或适应性笛卡尔网格上离散任意复杂的几何形状。在固体内部,流体体积分数为零,而在流体相中是统一的。我们证明,在材料界面,即体积分数从统一跳到零的位置,流体速度的正常成分假定固体速度的正常成分的值。根据Dal Maso,Le Floch和Murat的理论,可以通过Riemann不变性或广义的Rankine Hugoniot条件直接从管理方程中得出该结果,这证明使用了一种保养方法来治疗非保守产品。我们的新模型的管理方程是通过高阶路径保守的Ader不连续的Galerkin(DG)方法在均匀的笛卡尔网格上求解的,该方法具有后验子细胞有限体积(FV)限制器。由于数值方法是冲击捕获类型的,因此流体 - 固定边界永远不会通过数值方法明确跟踪,既不是通过接口重建,也不会通过网格运动。在一组数值测试问题上测试了所提出的方法的有效性,包括一维黎曼问题以及超音速流,固定和移动的刚体。

In this paper we propose a new diffuse interface model for the numerical simulation of inviscid compressible flows around fixed and moving solid bodies of arbitrary shape. The solids are assumed to be moving rigid bodies, without any elastic properties. The model is a simplified case of the seven-equation Baer-Nunziato model of compressible multi-phase flows, and results in a nonlinear hyperbolic system with non-conservative products. The geometry of the solid bodies is simply specified via a scalar field that represents the volume fraction of the fluid present in each control volume. This allows the discretization of arbitrarily complex geometries on simple uniform or adaptive Cartesian meshes. Inside the solid bodies, the fluid volume fraction is zero, while it is unitary in the fluid phase. We prove that at the material interface, i.e. where the volume fraction jumps from unity to zero, the normal component of the fluid velocity assumes the value of the normal component of the solid velocity. This result can be directly derived from the governing equations, either via Riemann invariants or from the generalized Rankine Hugoniot conditions according to the theory of Dal Maso, Le Floch and Murat, which justifies the use of a path-conservative approach for treating the nonconservative products. The governing equations of our new model are solved on uniform Cartesian grids via a high order path-conservative ADER discontinuous Galerkin (DG) method with a posteriori sub-cell finite volume (FV) limiter. Since the numerical method is of the shock capturing type, the fluid-solid boundary is never explicitly tracked by the numerical method, neither via interface reconstruction, nor via mesh motion. The effectiveness of the proposed approach is tested on a set of numerical test problems, including 1D Riemann problems as well as supersonic flows over fixed and moving rigid bodies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源