论文标题

非明智的Kerr-nut-de保姆空间

Non-singular Kerr-NUT-de Sitter spacetimes

论文作者

Lewandowski, Jerzy, Ossowski, Maciej

论文摘要

我们研究了Kerr-Nut-(反)Sitter和加速的Kerr-Nut-(Anti-)Sitter SpaceTime的Kerr-Nut-(反)杀戮地平线及其社区。地平线的几何形状在其中一个极点上具有不可忽视的奇异性,除非表征空间的参数满足了我们在当前论文中得出并解决的约束。在Kerr-nut-De保姆情况下,约束将时空和地平线区域的宇宙恒定相关联,使3个参数不含。在加速的情况下,加速度成为第四个参数,允许宇宙常数独立于该区域的任意价值。我们发现,至少在非超级案例中,非单一视野的邻域也是非单一的。最后,我们将嵌入式视野与先前欧洲D杀人型局部理论提供的嵌入式视野与二阶进行了比较。

We study Killing horizons and their neighbourhoods in the Kerr-NUT-(anti-)de Sitter and the accelerated Kerr-NUT-(anti-)de Sitter spacetimes. The geometries of the horizons have an irremovable singularity at one of the poles, unless the parameters characterising the spacetimes satisfy the constraint we derive and solve in the current paper. In the Kerr-NUT-de Sitter case, the constraint relates the cosmological constant of spacetime and the horizon area, leaving 3 parameters free. In the accelerated case the acceleration becomes a 4th parameter that allows the cosmological constant to take arbitrary value, independently of the area. We find that the neighbourhoods of the non-singular horizons are non-singular too, at least in the non-extremal case. Finally, we compare the embedded horizons with previously unembedded horizons provided by the local theory of type D Killing horizons to the second order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源