论文标题
最终边界:太空深度学习
The Final Frontier: Deep Learning in Space
论文作者
论文摘要
机器学习,尤其是深度学习,正在增加在空间应用中的使用,这反映了许多地球问题的开创性成功。部署太空设备,例如由于模块化卫星和商业空间推出的发展,小型演员的卫星越来越容易进入,这为该地区的进一步增长提供了增长。 Deep Learning提供复杂的计算智能的能力使其成为促进太空设备上各种任务并降低运营成本的有吸引力的选择。在这项工作中,我们确定了太空中的深度学习是移动和嵌入式机器学习的开发方向之一。我们整理了机器学习到空间数据的各种应用,例如卫星成像,并描述了在设备深度学习如何有意义地改善航天器的运行情况,例如通过降低通信成本或促进导航。我们详细介绍了卫星的详细和上下文计算平台,并与嵌入式系统和有关资源受限环境的深度学习中的当前研究相似。
Machine learning, particularly deep learning, is being increasing utilised in space applications, mirroring the groundbreaking success in many earthbound problems. Deploying a space device, e.g. a satellite, is becoming more accessible to small actors due to the development of modular satellites and commercial space launches, which fuels further growth of this area. Deep learning's ability to deliver sophisticated computational intelligence makes it an attractive option to facilitate various tasks on space devices and reduce operational costs. In this work, we identify deep learning in space as one of development directions for mobile and embedded machine learning. We collate various applications of machine learning to space data, such as satellite imaging, and describe how on-device deep learning can meaningfully improve the operation of a spacecraft, such as by reducing communication costs or facilitating navigation. We detail and contextualise compute platform of satellites and draw parallels with embedded systems and current research in deep learning for resource-constrained environments.