论文标题

将恢复到任务:基于配方的机器人任务的恢复驱动的开发

Taking Recoveries to Task: Recovery-Driven Development for Recipe-based Robot Tasks

论文作者

Banerjee, Siddhartha, Daruna, Angel, Kent, David, Liu, Weiyu, Balloch, Jonathan, Jain, Abhinav, Krishnan, Akshay, Rana, Muhammad Asif, Ravichandar, Harish, Shah, Binit, Shrivatsav, Nithin, Chernova, Sonia

论文摘要

机器人任务执行时,位于现实世界中的环境中时是脆弱的。因此,机器人体系结构必须依靠可靠的错误恢复,并将非平凡的复杂性添加到高度复杂的机器人系统中。为了应对发展的这种复杂性,我们引入了恢复驱动的开发(RDD),这是一种迭代任务脚本脚本过程,通过利用层次规范,名义任务和恢复开发的分离以及定位测试来促进快速任务和恢复发展。我们通过使用RDD为Fetchit开发的挑战的移动操纵器软件体系结构来验证我们的方法!在IEEE 2019国际机器人和自动化国际会议上的挑战。我们将系统的成功归因于使用RDD达到的鲁棒性水平,并以学习此类系统的经验教训得出结论。

Robot task execution when situated in real-world environments is fragile. As such, robot architectures must rely on robust error recovery, adding non-trivial complexity to highly-complex robot systems. To handle this complexity in development, we introduce Recovery-Driven Development (RDD), an iterative task scripting process that facilitates rapid task and recovery development by leveraging hierarchical specification, separation of nominal task and recovery development, and situated testing. We validate our approach with our challenge-winning mobile manipulator software architecture developed using RDD for the FetchIt! Challenge at the IEEE 2019 International Conference on Robotics and Automation. We attribute the success of our system to the level of robustness achieved using RDD, and conclude with lessons learned for developing such systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源