论文标题
限制定理的稳定香肠
Limit theorems for a stable sausage
论文作者
论文摘要
在本文中,我们研究了通过$ d $二维旋转不变的$α$稳定过程定义的稳定香肠体积的波动。作为主要结果,我们建立了一个功能性的中心限制定理(在$ d /α> 3/2 $的情况下),具有标准的一维棕色运动,而Khintchine's和Chung的迭代对数定律(在$ d /α> 9 /5 $的情况下为$ D /α> 9/5 $)。
In this article, we study fluctuations of the volume of a stable sausage defined via a $d$-dimensional rotationally invariant $α$-stable process. As the main results, we establish a functional central limit theorem (in the case when $d/α>3 /2$) with a standard one-dimensional Brownian motion in the limit, and Khintchine's and Chung's laws of the iterated logarithm (in the case when $d/α>9 /5$).