论文标题
使用卷积神经网络对超四个模型进行分割和恢复
Segmentation and Recovery of Superquadric Models using Convolutional Neural Networks
论文作者
论文摘要
在本文中,我们解决了用参数化的体积形状原始素表示3D视觉数据的问题。具体而言,我们提出了一种围绕卷积神经网络(CNN)构建的(两阶段)方法,该方法能够将复杂的深度场景分割为可以用超等级模型来表示的简单几何结构。在第一阶段,我们的方法使用蒙版RCNN模型在深度场景中识别类似超季度的结构,然后使用特殊设计的CNN回归器将超季度模型拟合到分段结构。使用我们的方法,我们能够描述具有少量可解释参数的复杂结构。我们评估了有关合成和现实深度数据的拟议方法,并表明我们的解决方案不仅与最先进的方法相比会导致竞争性能,而且能够在竞争方法所需的时间内将场景分解为多个超等分模型。我们制作了本文中使用的所有数据和模型,可从https://lmi.fe.uni-lj.si/en/research/resources/sq-seg提供。
In this paper we address the problem of representing 3D visual data with parameterized volumetric shape primitives. Specifically, we present a (two-stage) approach built around convolutional neural networks (CNNs) capable of segmenting complex depth scenes into the simpler geometric structures that can be represented with superquadric models. In the first stage, our approach uses a Mask RCNN model to identify superquadric-like structures in depth scenes and then fits superquadric models to the segmented structures using a specially designed CNN regressor. Using our approach we are able to describe complex structures with a small number of interpretable parameters. We evaluated the proposed approach on synthetic as well as real-world depth data and show that our solution does not only result in competitive performance in comparison to the state-of-the-art, but is able to decompose scenes into a number of superquadric models at a fraction of the time required by competing approaches. We make all data and models used in the paper available from https://lmi.fe.uni-lj.si/en/research/resources/sq-seg.