论文标题

建筑物中微气候的数据驱动控制:一种事件触发的增强学习方法

Data-driven control of micro-climate in buildings: an event-triggered reinforcement learning approach

论文作者

Hosseinloo, Ashkan Haji, Ryzhov, Alexander, Bischi, Aldo, Ouerdane, Henni, Turitsyn, Konstantin, Dahleh, Munther A.

论文摘要

智能建筑物具有巨大的潜力,可以为我们的星球塑造节能,可持续性和更经济的未来,因为建筑物约占全球能源消耗的40%。智能建筑的未来在于使用感官数据来进行自适应决策和控制,这是由于在短时间内以在线和持续的方式学习良好控制政策的主要挑战所蒙蔽。为了应对这一挑战,提出了一个事件触发的 - 与经典的时间触发的范式相反,提议在发生事件并收集足够的信息时做出学习和控制决策。事件的特征是某些设计条件,并且在满足条件时发生,例如,当达到某个状态阈值时。通过系统地调整学习和控制决策的时间,提出的框架可以潜在地减少学习的差异,从而改善控制过程。我们基于半马多夫决策过程制定微气候控制问题,该过程允许变化的时间过渡和决策。使用扩展的策略梯度定理和在增强学习设置中的时间差异方法,我们提出了两种学习算法,以通过事件触发的建筑物中的微气候控制。我们通过设计智能学习恒温器来显示我们提出的方法的功效,该恒温器同时优化了能源消耗和测试建筑中乘员的舒适性。

Smart buildings have great potential for shaping an energy-efficient, sustainable, and more economic future for our planet as buildings account for approximately 40% of the global energy consumption. Future of the smart buildings lies in using sensory data for adaptive decision making and control that is currently gloomed by the key challenge of learning a good control policy in a short period of time in an online and continuing fashion. To tackle this challenge, an event-triggered -- as opposed to classic time-triggered -- paradigm, is proposed in which learning and control decisions are made when events occur and enough information is collected. Events are characterized by certain design conditions and they occur when the conditions are met, for instance, when a certain state threshold is reached. By systematically adjusting the time of learning and control decisions, the proposed framework can potentially reduce the variance in learning, and consequently, improve the control process. We formulate the micro-climate control problem based on semi-Markov decision processes that allow for variable-time state transitions and decision making. Using extended policy gradient theorems and temporal difference methods in a reinforcement learning set-up, we propose two learning algorithms for event-triggered control of micro-climate in buildings. We show the efficacy of our proposed approach via designing a smart learning thermostat that simultaneously optimizes energy consumption and occupants' comfort in a test building.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源