论文标题
各向异性波方程的本地现场一致的不连续的Galerkin方法
A locally field-aligned discontinuous Galerkin method for anisotropic wave equations
论文作者
论文摘要
在融合设备的磁化等离子体中,强磁场会导致高度各向异性物理,其中沿场线的溶液比例比垂直线大得多。因此,关于准确性和效率,数值方法应允许独立解决平行和垂直分辨率。在这项工作中,我们考虑了具有可变系数的二维各向异性波方程的特征值问题,该方程是线性化理想磁性水力动力学的简化模型。为此,我们建议使用与磁场对齐的网格,并选择使用不连续的Galerkin方法离散问题,该方法自然允许不合格的接口。首先,我们分析了恒定系数各向异性波方程的特征值光谱,并证明该方法将准确性提高了多达七个数量级,如果与具有相同自由度数量的非对准方法相比。特别是,对于具有高模式数字的本征函数的结果改善。我们还应用了该方法来计算相关各向异性波方程的特征值光谱,并具有恒星配置的通量表面的可变系数。我们根据光谱代码对结果进行基准测试。
In magnetized plasmas of fusion devices the strong magnetic field leads to highly anisotropic physics where solution scales along field lines are much larger than perpendicular to it. Hence, regarding both accuracy and efficiency, a numerical method should allow to address parallel and perpendicular resolutions independently. In this work, we consider the eigenvalue problem of a two-dimensional anisotropic wave equation with variable coefficients which is a simplified model of linearized ideal magnetohydrodynamics. For this, we propose to use a mesh that is aligned with the magnetic field and choose to discretize the problem with a discontinuous Galerkin method which naturally allows for non-conforming interfaces. First, we analyze the eigenvalue spectrum of a constant coefficient anisotropic wave equation, and demonstrate that this approach improves the accuracy by up to seven orders of magnitude, if compared to a non-aligned method with the same number of degrees of freedom. In particular, the results improve for eigenfunctions with high mode numbers. We also apply the method to compute the eigenvalue spectrum of the associated anisotropic wave equation with variable coefficients of flux surfaces of a Stellarator configuration. We benchmark the results against a spectral code.