论文标题
使用蹦床现象增强了平坦的基于螺旋的音调跨膜的深层波长隙
Enhancement of deep-subwavelength band gaps in flat spiral-based phononic metasurfaces using the trampoline phenomena
论文作者
论文摘要
弹性和声学的超材料可以通过共振来塑造波的分散。反过来,共振会引起负有效属性,该特性通常位于共振频率周围,这些谐振频率支持子波长度频率(即低于Bragg-Scerter的极限)的带隙。但是,频段间隙宽度与谐振器的质量和体积密切相关,这限制了它们在应用中的功能。蹦床现象已在数值和实验上表现出来,可以通过穿孔扩大二维,基于支柱的超材料的运行频率范围。在这项工作中,我们在轻质和平面晶格中演示了蹦床现象,这些晶格由单位细胞中的阿基米丁螺旋阵列组成。已经证明基于螺旋形的分离材料可以支持不同的带隙开口机理,即布拉格散射,局部共振和惯性扩增。在这里,我们通过数值分析并实验实现了用于不同晶格镶嵌物的平面跨面现象。最后,我们进行了蹦床支柱和螺旋形之间的比较研究,并表明蹦床螺旋螺旋在轻巧,紧凑和操作带宽方面的表现优于支柱。
Elastic and acoustic metamaterials can sculpt dispersion of waves through resonances. In turn, resonances can give rise to negative effective properties, usually localized around the resonance frequencies, which support band gaps at subwavelength frequencies (i.e., below the Bragg-scattering limit). However, the band gaps width correlates strongly with the resonators' mass and volume, which limits their functionality in applications. Trampoline phenomena have been numerically and experimentally shown to broaden the operational frequency ranges of two-dimensional, pillar-based metamaterials through perforation. In this work, we demonstrate trampoline phenomena in lightweight and planar lattices consisting of arrays of Archimedean spirals in unit cells. Spiral-based metamaterials have been shown to support different band gap opening mechanisms, namely, Bragg-scattering, local resonances and inertia amplification. Here, we numerically analyze and experimentally realize trampoline phenomena in planar metasurfaces for different lattice tessellations. Finally, we carry out a comparative study between trampoline pillars and spirals and show that trampoline spirals outperform the pillars in lightweight, compactness and operational bandwidth.