论文标题

$ z \ sim $ 0.62在黎明调查中对H $α$发射器的全面研究:对深层和宽区域的需求

A comprehensive study of H$α$ emitters at $z \sim$ 0.62 in the DAWN survey: the need for deep and wide regions

论文作者

Harish, Santosh, Coughlin, Alicia, Rhoads, James E., Malhotra, Sangeeta, Finkelstein, Steven L., Stevans, Matthew, Tilvi, Vithal S., Khostovan, Ali Ahmad, Veilleux, Sylvain, Wang, Junxian, Hibon, Pascale, Zabl, Johnnes, Joshi, Bhavin, Pharo, John, Wold, Isak, Perez, Lucia A., Zheng, Zhen-Ya, Probst, Ronald, Swaters, Rob, Mobasher, Bahram, Jiang, Tianxing, Yang, Huan

论文摘要

我们介绍了h $α$选择的样本,以$ z \ sim0.62 $从深和宽狭窄的波段(黎明)调查中选择样品的亮度函数(LF)和恒星形成速率密度(SFRD)的新估计值。我们的结果是基于扩展宇宙区域中新的H $α$样品(与Coughlin等人2018相比),其中包括侧翼场,导致总面积覆盖率为$ \ sim $ 1.5 $^2 $。基于使用Spectro-Photomportric Redshifts和宽带色彩分类的强大选择标准选择了总共241 h $α$发射器。我们通过使用恒定的粉尘消光校正来计算LF和SFRD来探索不同的灰尘校正处方的效果,A {$ _ {\ textrm {h}α} = 1 $} mag,依赖于亮度的校正和出色的依赖性依赖性依赖性。使用具有最佳参数的Schechter函数:L $^*= 10^{42.24} $ erg s $^{ - 1} $,$ ϕ^*= 10^*= 10^{ - 2.85} $ MPC $^{ - 3} $,$ n = -1.3} $,$α= -1.3} $,$α= - 3} $,$ a = -1.3} $,$α= 10^{ - 2.85} $ mpc $^{ - 3} $,$ n = -3} $,$α= -1.62 l $^*= 10^{42.31} $ erg s $^{ - 1} $,$ ϕ^*= 10^{ - 2.8} $ mpc $^{ - 3} $,$α= -1.39 $,用于光度互动的粉尘校正,以及l $^*= 10^*= 10^$ er^$ er s $ er^$ erg s $ er $ ϕ^*= 10^{ - 2.91} $ mpc $^{ - 3} $,$α= -1.48 $,用于恒星质量依赖的尘埃校正。黎明调查的深度和广泛的性质有效地在广泛的亮度范围内采样了h $α$发射器,从而在LF的微弱和明亮的端提供了更好的限制。另外,SFRD估计$ρ_ {\ textrm {sfr}} = 10^{ - 1.39} $ m $ _ {\ odot} $ yr $^{ - 1} $ mpc $^{ - 3} $ m $ _ {\ odot} $ yr $^{ - 1} $ mpc $^{ - 3} $(与光度相关的灰尘校正)和$ρ_ {\ textrm {sfr}} = 10^10^{ - 1.49} (恒星质量依赖的尘埃校正)与从以前的H $α$调查中看到的红移($ 0 <z <2 $)的SFRD的演变非常吻合。

We present new estimates of the luminosity function (LF) and star formation rate density (SFRD) for an H$α$ selected sample at $z\sim0.62$ from the Deep And Wide Narrow-band (DAWN) survey. Our results are based on a new H$α$ sample in the extended COSMOS region (compared to Coughlin et al. 2018) with the inclusion of flanking fields, resulting in a total area coverage of $\sim$1.5 deg$^2$. A total of 241 H$α$ emitters were selected based on robust selection criteria using spectro-photometric redshifts and broadband color-color classification. We explore the effect of different dust correction prescriptions by calculating the LF and SFRD using a constant dust extinction correction, A{$_{\textrm{H}α}=1$} mag, a luminosity-dependent correction, and a stellar-mass dependent correction. The resulting H$α$ LFs are well fitted using Schechter functions with best-fit parameters: L$^*=10^{42.24}$ erg s$^{-1}$, $ϕ^*=10^{-2.85}$ Mpc$^{-3}$, $α= -1.62$ for constant dust correction, L$^*=10^{42.31}$ erg s$^{-1}$, $ϕ^*=10^{-2.8}$ Mpc$^{-3}$, $α=-1.39$ for luminosity-dependent dust correction, and L$^*=10^{42.36}$ erg s$^{-1}$, $ϕ^*=10^{-2.91}$ Mpc$^{-3}$, $α= -1.48$, for stellar mass-dependent dust correction. The deep and wide nature of the DAWN survey effectively samples H$α$ emitters over a wide range of luminosities, thereby providing better constraints on both the faint and bright end of the LF. Also, the SFRD estimates $ρ_{\textrm{SFR}}=10^{-1.39}$ M$_{\odot}$yr$^{-1}$Mpc$^{-3}$ (constant dust correction), $ρ_{\textrm{SFR}}=10^{-1.47}$ M$_{\odot}$yr$^{-1}$Mpc$^{-3}$ (luminosity-dependent dust correction), and $ρ_{\textrm{SFR}}=10^{-1.49}$ M$_{\odot}$yr$^{-1}$Mpc$^{-3}$ (stellar mass-dependent dust correction) are in good agreement with the evolution of SFRD across redshifts ($0 < z < 2$) seen from previous H$α$ surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源