论文标题

创建天文图像数据集的高质量全天空可视化:臀部和蒙太奇

Creating High Quality All-Sky Visualizations of Astronomy Image Data Sets: HiPS and Montage

论文作者

Berriman, G. Bruce, Good, John C., Desai, Vandana, Groom, Steven L.

论文摘要

我们描述了一项案例研究,以使用蒙太奇图像镶嵌引擎来创建分层渐进式调查(HIPS)天空 - 塞序列方案中的同类图像数据集的地图。我们的方法表明,蒙太奇揭示了红外图像的科学含量,比臀部地图中迄今为止可能的更详细。该方法利用了蒙太奇图像镶嵌引擎的两个独特(据我们所知)的特征:背景建模以纠正时间变量图像背景到共同级别;以及自适应图像拉伸以呈现图像以进行可视化。制定了四个新工具,在经过全面测试后将成为蒙太奇分布的一部分,为图的创建提供了支持。计算加工的密集部分在于图像的重新投影,我们展示了如何优化处理有效创建马赛克的处理,这些处理又用于在臀部瓷砖方案中创建地图。我们计划将我们的方法应用于红外图像数据集,例如Spitzer,2 Mass,Iras和Planck提供的方法集。

We describe a case study to use the Montage image mosaic engine to create maps of the ALLWISE image data set in the Hierarchical Progressive Survey (HiPS) sky-tesselation scheme. Our approach demonstrates that Montage reveals the science content of infrared images in greater detail than has hitherto been possible in HiPS maps. The approach exploits two unique (to our knowledge) characteristics of the Montage image mosaic engine: background modeling to rectify the time variable image backgrounds to common levels; and an adaptive image stretch to present images for visualization. The creation of the maps is supported by the development of four new tools that when fully tested will become part of the Montage distribution. The compute intensive part of the processing lies in the reprojection of the images, and we show how we optimized the processing for efficient creation of mosaics that are used in turn to create maps in the HiPS tiling scheme. We plan to apply our methodology to infrared image data sets such a those delivered by Spitzer, 2MASS, IRAS and Planck.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源