论文标题

具有猝灭随机性及其应用的Ising模型的局部能量的不平等

Inequality for local energy of Ising models with quenched randomness and its application

论文作者

Okuyama, Manaka, Ohzeki, Masayuki

论文摘要

在这项研究中,我们以淬灭的随机性扩展了Ising模型的局部能量平均值的下限[J.物理。 Soc。 JPN。 76,074711(2007)]获得了不对称分布的对称分布。与对称分布的情况相比,我们的界限具有非平凡项。通过将获得的绑定应用于高斯分布,我们可以根据相关函数平方的期望获得下限。因此,我们证明在高斯随机场中的Ising模型中,旋转玻璃阶参数通常在任何温度下都有有限的值,而与其他相互作用的形式无关。

In this study, we extend the lower bound on the average of the local energy of the Ising model with quenched randomness [J. Phys. Soc. Jpn. 76, 074711 (2007)] obtained for a symmetric distribution to an asymmetric one. Compared with the case of symmetric distribution, our bound has a non-trivial term. By applying the acquired bound to a Gaussian distribution, we obtain the lower bounds on the expectation of the square of the correlation function. Thus, we demonstrate that in the Ising model in a Gaussian random field, the spin-glass order parameter generally has a finite value at any temperature, regardless of the forms of the other interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源