论文标题

计算琐碎阶段的本地特性

Computing local properties in the trivial phase

论文作者

Huang, Yichen

论文摘要

如果可以将其连接到完全脱钩的汉密尔顿人,并具有平稳的翻译不变性的当地汉密尔顿人,那么翻译不变的当地汉密尔顿人处于琐碎的阶段。对于这种哈密顿量的基本状态,我们表明,可以在一个空间维度中计算出局部观察值的期望值$ \ text {poly}(1/δ)$,$ e^{\ e^{\ text {poly} \ log} \ log(1/δ)} $在两个和更高的尺寸中,$Δ$ desed(desive nes desistive nective odsive odsive)精确。该算法适用于有限大小和热力学极限的系统。它仅假定存在,但对路径的任何了解。

A translation-invariant gapped local Hamiltonian is in the trivial phase if it can be connected to a completely decoupled Hamiltonian with a smooth path of translation-invariant gapped local Hamiltonians. For the ground state of such a Hamiltonian, we show that the expectation value of a local observable can be computed in time $\text{poly}(1/δ)$ in one spatial dimension and $e^{\text{poly}\log(1/δ)}$ in two and higher dimensions, where $δ$ is the desired (additive) accuracy. The algorithm applies to systems of finite size and in the thermodynamic limit. It only assumes the existence but not any knowledge of the path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源