论文标题
计算琐碎阶段的本地特性
Computing local properties in the trivial phase
论文作者
论文摘要
如果可以将其连接到完全脱钩的汉密尔顿人,并具有平稳的翻译不变性的当地汉密尔顿人,那么翻译不变的当地汉密尔顿人处于琐碎的阶段。对于这种哈密顿量的基本状态,我们表明,可以在一个空间维度中计算出局部观察值的期望值$ \ text {poly}(1/δ)$,$ e^{\ e^{\ text {poly} \ log} \ log(1/δ)} $在两个和更高的尺寸中,$Δ$ desed(desive nes desistive nective odsive odsive)精确。该算法适用于有限大小和热力学极限的系统。它仅假定存在,但对路径的任何了解。
A translation-invariant gapped local Hamiltonian is in the trivial phase if it can be connected to a completely decoupled Hamiltonian with a smooth path of translation-invariant gapped local Hamiltonians. For the ground state of such a Hamiltonian, we show that the expectation value of a local observable can be computed in time $\text{poly}(1/δ)$ in one spatial dimension and $e^{\text{poly}\log(1/δ)}$ in two and higher dimensions, where $δ$ is the desired (additive) accuracy. The algorithm applies to systems of finite size and in the thermodynamic limit. It only assumes the existence but not any knowledge of the path.