论文标题

物理知识的大脑MRI分割

Physics-informed brain MRI segmentation

论文作者

Borges, Pedro, Sudre, Carole, Varsavsky, Thomas, Thomas, David, Drobnjak, Ivana, Ourselin, Sebastien, Cardoso, M. Jorge

论文摘要

磁共振成像(MRI)是最灵活,最有力的医学成像方式之一。但是,这种灵活性确实是有代价的。在不同位点获得的MRI图像在量化脑解剖结构或病理学时会导致下游问题,在不同的位点获得的MRI图像在对比度和组织外观上显示出显着差异。在这项工作中,我们建议将基于多参数MRI的静态方程序列模拟与分割卷积神经网络(CNN)相结合,以使这些网络可与采集参数的变化相结合。结果表明,当均给予图像及其相关的物理学获取参数时,CNN可以产生分割,表现出对获取变化的稳健性。我们还表明,所提出的物理学方法可用于弥合多中心和纵向成像研究,其中成像采集在一个站点或时间上会有所不同。

Magnetic Resonance Imaging (MRI) is one of the most flexible and powerful medical imaging modalities. This flexibility does however come at a cost; MRI images acquired at different sites and with different parameters exhibit significant differences in contrast and tissue appearance, resulting in downstream issues when quantifying brain anatomy or the presence of pathology. In this work, we propose to combine multiparametric MRI-based static-equation sequence simulations with segmentation convolutional neural networks (CNN), to make these networks robust to variations in acquisition parameters. Results demonstrate that, when given both the image and their associated physics acquisition parameters, CNNs can produce segmentations that exhibit robustness to acquisition variations. We also show that the proposed physics-informed methods can be used to bridge multi-centre and longitudinal imaging studies where imaging acquisition varies across a site or in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源