论文标题

通过能源经济优化模型进行可重复分析的情况

The Case for Repeatable Analysis with Energy Economy Optimization Models

论文作者

DeCarolis, Joseph F., Hunter, Kevin, Sreepathi, Sarat

论文摘要

能源经济优化(EEO)模型采用正式搜索技术来探索几十年来未来的决策空间,以提供与政策相关的见解。 EEO模型是决策者的关键工具,他们必须在面对巨大的未来不确定性时做出长期影响的近期决策。尽管基于模型的分析的数量增殖是对模型开发和应用中透明度的不足。鉴于EEO模型的复杂,数据密集型性质以及对源代码和数据的普遍缺乏访问,基于模型的分析的许多假设都隐藏在外部观察者中。本文讨论了模型构建过程中涉及的简化和主观判断,该过程无法在期刊论文,报告或模型文档中充分阐明。此外,我们认为,出于所有实际目的,基于EEO模型的见解无法通过与现实世界成果进行比较来验证。结果,建模者没有可靠的指标来评估模型提供可靠见解的能力。我们断言,应该通过询问公开可用的源代码和数据来发现EEO模型。此外,第三方应该能够运行特定的模型实例,以便独立验证已发布的结果。然而,对十二个EEO模型的评论表明,在大多数情况下,模型结果的复制目前是不可能的。我们提供了几项建议,以帮助开发和维护一个软件框架,以进行可重复的模型分析。

Energy economy optimization (EEO) models employ formal search techniques to explore the future decision space over several decades in order to deliver policy-relevant insights. EEO models are a critical tool for decision-makers who must make near-term decisions with long-term effects in the face of large future uncertainties. While the number of model-based analyses proliferates, insufficient attention is paid to transparency in model development and application. Given the complex, data-intensive nature of EEO models and the general lack of access to source code and data, many of the assumptions underlying model-based analysis are hidden from external observers. This paper discusses the simplifications and subjective judgments involved in the model building process, which cannot be fully articulated in journal papers, reports, or model documentation. In addition, we argue that for all practical purposes, EEO model-based insights cannot be validated through comparison to real world outcomes. As a result, modelers are left without credible metrics to assess a model's ability to deliver reliable insight. We assert that EEO models should be discoverable through interrogation of publicly available source code and data. In addition, third parties should be able to run a specific model instance in order to independently verify published results. Yet a review of twelve EEO models suggests that in most cases, replication of model results is currently impossible. We provide several recommendations to help develop and sustain a software framework for repeatable model analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源