论文标题
关于极端假设的极端$ d $维空间分位数的行为
On the behavior of extreme $d$-dimensional spatial quantiles under minimal assumptions
论文作者
论文摘要
“空间”或“几何”分位数是在多输出分位数回归的框架内,唯一可以应对具有高维数据和功能数据的多元分位数。这项工作研究有限维情况下的空间分位数,其中分布的空间分位数$μ_{α,u}(p)$ $ p $在$ \ mathbb {r}^d $中取值是$ \ mathbb {r}^d $ indecy $ sphorde $ \ mathbb {r}^$α\ in [0,1) $ \ Mathcal {s}^{d-1} $ of $ \ mathbb {r}^d $ ---或在$ \ mathbb {r}^d $的开放单位球中与vector $αu$等价。最近,Girard和Stupfler(2017)证明了(i)以$α\至1 $获得的极端分位数$μ_{α,u}(p)$退出所有紧凑型集合$ \ mathbb {r}^d $的所有紧凑型集合,以及(ii),这些(ii)在汇聚给$ u $的方向上这样做。这些结果有助于理解这些分位数的性质:即使$ p $具有有限的支持,第一个结果也特别引人注目,而第二个结果阐明了空间分位数对$ u $的微妙依赖性。但是,它们是根据假设建立的,认为$ p $是非原子的,因此目前尚不清楚它们是否符合经验概率措施。我们通过在较温和的条件下证明这些结果来改善这一点,从而允许样本案例。这样可以防止使用梯度条件参数,这使证据变得非常具有挑战性。我们还削弱了有限维空间分位数的唯一性的众所周知的足够条件。
"Spatial" or "geometric" quantiles are the only multivariate quantiles coping with both high-dimensional data and functional data, also in the framework of multiple-output quantile regression. This work studies spatial quantiles in the finite-dimensional case, where the spatial quantile $μ_{α,u}(P)$ of the distribution $P$ taking values in $\mathbb{R}^d $ is a point in $\mathbb{R}^d$ indexed by an order $α\in[0,1)$ and a direction $u$ in the unit sphere $\mathcal{S}^{d-1}$ of $\mathbb{R}^d$ --- or equivalently by a vector $αu$ in the open unit ball of $\mathbb{R}^d$. Recently, Girard and Stupfler (2017) proved that (i) the extreme quantiles $μ_{α,u}(P)$ obtained as $α\to 1$ exit all compact sets of $\mathbb{R}^d$ and that (ii) they do so in a direction converging to $u$. These results help understanding the nature of these quantiles: the first result is particularly striking as it holds even if $P$ has a bounded support, whereas the second one clarifies the delicate dependence of spatial quantiles on $u$. However, they were established under assumptions imposing that $P$ is non-atomic, so that it is unclear whether they hold for empirical probability measures. We improve on this by proving these results under much milder conditions, allowing for the sample case. This prevents using gradient condition arguments, which makes the proofs very challenging. We also weaken the well-known sufficient condition for uniqueness of finite-dimensional spatial quantiles.