论文标题
X射线图像的无监督异常检测
Unsupervised Anomaly Detection for X-Ray Images
论文作者
论文摘要
获得医疗(图像)数据的标签需要稀缺和昂贵的专家。此外,由于症状模棱两可,单图像很少足以正确诊断医疗状况。相反,它通常需要考虑其他背景信息,例如患者的病史或测试结果。因此,我们没有专注于在端到端时尚中提供不确定的最终诊断的不可解释的黑盒系统,而是研究如何使用无异常的图像训练的方法来帮助医生评估X射线射线手术图像。我们的方法提高了做出诊断并降低缺失重要区域的风险的效率。因此,我们采用了最新的方法来无监督学习来检测异常,并展示了如何解释这些方法的输出。为了减少通常可能被误认为异常的噪声效果,我们引入了强大的预处理管道。我们提供了对不同方法的广泛评估,并从经验上证明,即使没有标签,也有可能在X射线X射线图像的真实数据集中获得令人满意的结果。我们还评估了预处理的重要性,我们的主要发现之一是,没有它,我们的大多数方法的表现并不比随机方法更好。为了培养可重复性和加速研究,我们在https://github.com/valentyn1997/xray上公开代码
Obtaining labels for medical (image) data requires scarce and expensive experts. Moreover, due to ambiguous symptoms, single images rarely suffice to correctly diagnose a medical condition. Instead, it often requires to take additional background information such as the patient's medical history or test results into account. Hence, instead of focusing on uninterpretable black-box systems delivering an uncertain final diagnosis in an end-to-end-fashion, we investigate how unsupervised methods trained on images without anomalies can be used to assist doctors in evaluating X-ray images of hands. Our method increases the efficiency of making a diagnosis and reduces the risk of missing important regions. Therefore, we adopt state-of-the-art approaches for unsupervised learning to detect anomalies and show how the outputs of these methods can be explained. To reduce the effect of noise, which often can be mistaken for an anomaly, we introduce a powerful preprocessing pipeline. We provide an extensive evaluation of different approaches and demonstrate empirically that even without labels it is possible to achieve satisfying results on a real-world dataset of X-ray images of hands. We also evaluate the importance of preprocessing and one of our main findings is that without it, most of our approaches perform not better than random. To foster reproducibility and accelerate research we make our code publicly available at https://github.com/Valentyn1997/xray