论文标题

针对Caputo和Riemann-Liouville衍生品的分数类似Stefan的问题的明确解决方案

Explicit Solutions to Fractional Stefan-like problems for Caputo and Riemann-Liouville Derivatives

论文作者

Roscani, Sabrina, Caruso, Nahuel, Tarzia, Domingo

论文摘要

通过使用riemann-liouville和caputo衍生品$α\ in(0,1)$验证它们是否在$α= 1 $时在极限情况下与相同的经典stefan问题相吻合,考虑了两个分数两相的问题。对于这两个问题,就介绍了赖特功能的明确解决方案。即使这两个解决方案的相似性,也提供了证明它们与众不同的证明。当$α\附近1 $的$α\时,将收敛到同一经典解决方案的其他解决方案。还提供和分析了问题的无量纲版本的数值示例。

Two fractional two-phase Stefan-like problems are considered by using Riemann-Liouville and Caputo derivatives of order $α\in (0, 1)$ verifying that they coincide with the same classical Stefan problem at the limit case when $α=1$. For both problems, explicit solutions in terms of the Wright functions are presented. Even though the similarity of the two solutions, a proof that they are different is also given. The convergence when $α\nearrow 1$ of the one and the other solutions to the same classical solution is given. Numerical examples for the dimensionless version of the problem are also presented and analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源