论文标题
来自多个字符串序列输入的随机L系统推断
Stochastic L-system Inference from Multiple String Sequence Inputs
论文作者
论文摘要
Lindenmayer Systems(L-Systems)是由字符串重写规则组成的语法系统。规则将字符串中的每个符号与后继者并行替换为产生下一个字符串,并且此过程迭代。在随机上下文的L-System(S0L-System)中,每个符号可能具有一个或多个重写规则,每个符号都有相关的选择概率。已发现正确构造的重写规则可用于建模和模拟某些自然和人类工程的过程,其中每个派生的字符串描述了模拟中的一步。通常,过程是由专家建模的,这些专家会根据测量或域知识精心构建规则。本文提出了一种自动化的方法来查找随机L-System,给定一组字符串序列作为输入。实施的工具称为S0L系统(PMIT-S0L)的工厂模型推理工具。 PMIT-S0L使用960个测试套件中的960个程序生成的S0L系统,该系统用于生成输入字符串,然后使用PMIT-S0L来仅从序列中推断系统。评估表明,PMIT-S0L INVERS S0L系统在12小时内具有多达9个重写规则的S0L系统。此外,发现3个字符串序列足以在测试套件中的100%的情况下找到正确的原始重写规则,而6个字符串序列可将相关概率的差异降低到约1%或更少。
Lindenmayer systems (L-systems) are a grammar system that consist of string rewriting rules. The rules replace every symbol in a string in parallel with a successor to produce the next string, and this procedure iterates. In a stochastic context-free L-system (S0L-system), every symbol may have one or more rewriting rule, each with an associated probability of selection. Properly constructed rewriting rules have been found to be useful for modeling and simulating some natural and human engineered processes where each derived string describes a step in the simulation. Typically, processes are modeled by experts who meticulously construct the rules based on measurements or domain knowledge of the process. This paper presents an automated approach to finding stochastic L-systems, given a set of string sequences as input. The implemented tool is called the Plant Model Inference Tool for S0L-systems (PMIT-S0L). PMIT-S0L is evaluated using 960 procedurally generated S0L-systems in a test suite, which are each used to generate input strings, and PMIT-S0L is then used to infer the system from only the sequences. The evaluation shows that PMIT-S0L infers S0L-systems with up to 9 rewriting rules each in under 12 hours. Additionally, it is found that 3 sequences of strings is sufficient to find the correct original rewriting rules in 100% of the cases in the test suite, and 6 sequences of strings reduces the difference in the associated probabilities to approximately 1% or less.