论文标题

在遗传学紧密结合模型中,新兴的非热边缘极化

Emergent Non-Hermitian Edge Polarisation in an Hermitian Tight-binding Model

论文作者

Smith, Thomas Benjamin, Principi, Alessandro

论文摘要

我们研究了具有负dirac-delta电位的二分子kronig-penney模型,除其他模型外,可以用来解释纳米颗粒阵列中的等离子体传播。这样的系统可以映射到类似su-schrieffer-heeger的模型中,但是,通常,相邻位点的“原子”波函数之间的重叠并不可忽略。在这种情况下,保留其拓扑保护的有限系统的边缘状态似乎已减弱或放大。这种现象称为“边缘极化”,通常与潜在的非热拓扑相关。通过研究批量系统,我们表明,在这种物理“原子”(晶格位置)的基础上,可能导致的紧密结合特征值问题显得非热者。结果{\ it有效}批量哈密顿人具有$ {\ cal pt} $ - 对称性及其拓扑不变性,它是根据非铁人分类来解释的,被发现由大量的绕组数的$ \ \ m athbb {z} {z} $ - 类型给出。通过既定的散装对应关系,对边缘极化的观察被解释为{\ it有效}散装汉密尔顿的新出现的非富甲皮肤效应。因此,重叠矩阵在否则的遗传性问题中会产生非弱的效果。一个普遍的事实,适用于更广泛的系统,而不是这里研究的系统。

We study a bipartite Kronig-Penney model with negative Dirac-delta potentials that may be used, amongst other models, to interpret plasmon propagation in nanoparticle arrays. Such a system can be mapped into a Su-Schrieffer-Heeger-like model however, in general, the overlap between 'atomic' wavefunctions of neighbouring sites is not negligible. In such a case, the edge states of the finite system, which retain their topological protection, appear to be either attenuated or amplified. This phenomenon, called "edge polarisation", is usually associated with an underlying non-Hermitian topology. By investigating the bulk system, we show that the resulting tight-binding eigenvalue problem may be made to appear non-Hermitian in this physical 'atomic' (lattice-site) basis. The resulting {\it effective} bulk Hamiltonian possesses ${\cal PT}$-symmetry and its topological invariant, interpreted in terms of a non-Hermitian classification, is found to be given by a bulk winding number of $\mathbb{Z}$-type. The observation of edge polarisation, through the established bulk-boundary correspondence, is then interpreted as an emerging non-Hermitian skin-effect of the {\it effective} bulk Hamiltonian. Therefore, the overlap matrix generates non-Hermitian-like effects in an otherwise Hermitian problem; a general fact applicable to a broader range of systems than just the one studied here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源