论文标题
$ m _ {\ rm {dust}}} - m _ {\ star} $关系的粒子陷阱的起源提示
Hints on the origins of particle traps in protoplanetary disks given by the $M_{\rm{dust}}-M_{\star}$ relation
论文作者
论文摘要
主要使用ALMA进行的原星磁盘的人口统计调查提供了围绕具有不同恒星类型和不同星形形成区域的星星周围的各种磁盘灰尘块($ M _ {\ rm {dust}} $)的访问权限。这些调查发现$ m _ {\ rm {dust}} $和$ m _ {\ star} $之间的幂律关系使及时浸透,但对于过渡磁盘(TDS)来说也很平坦。我们执行了尘埃演化模型,其中包括对气体表面密度的扰动,并具有不同的幅度,以研究粒子捕获对$ m _ {\ rm {dust}}} - m _ {\ star} $关系的影响。这些扰动旨在模仿起源于行星的压力凸起。我们专注于基于系外行星统计的不同恒星和磁盘质量引起的影响,这些统计表明行星质量对恒星质量和金属性的依赖性。灰尘进化的模型可以重现所观察到的$ m _ {\ rm {dust}} - M _ {\ star} $在包括强恒星区域的不同恒星区域中的关系,以及当带有恒星质量的磁盘质量尺度($ m _ {\ rm rm rmm {disk {disk}} = 0.055 = 0.055时,这一结果是由于尘埃捕获和灰尘的生长超过厘米大小的压力颠簸。但是,对于TDS和带有子结构的圆盘的$ m _ {\ rm {dust}} $的扁平关系不能由模型复制,除非在压力凸起内部抑制巨石的形成。在起源于行星的压力颠簸的背景下,我们的结果与当前关于巨型行星发生的外部外球星统计数据随着恒星质量的增加而增加,但我们无法对低质量恒星中所需的行星类型得出结论。这归因于以下事实:对于$ m_ \ star <1 \,m_ \ odot $,观察到的$ m _ {\ rm {dust}} $从型号获得的$ M _ {\ rm {dust}} $非常低,这是由于在压力凸起内部千分表尺寸以外的灰尘粒子的有效增长。
Demographic surveys of protoplanetary disks, carried out mainly with ALMA, have provided access to a large range of disk dust masses ($M_{\rm{dust}}$) around stars with different stellar types and in different star-forming regions. These surveys found a power-law relation between $M_{\rm{dust}}$ and $M_{\star}$ that steepens in time, but which is also flatter for transition disks (TDs). We performed dust evolution models, which included perturbations to the gas surface density with different amplitudes to investigate the effect of particle trapping on the $M_{\rm{dust}}-M_{\star}$ relation. These perturbations were aimed at mimicking pressure bumps that originated from planets. We focused on the effect caused by different stellar and disk masses based on exoplanet statistics that demonstrate a dependence of planet mass on stellar mass and metallicity. Models of dust evolution can reproduce the observed $M_{\rm{dust}}-M_{\star}$ relation in different star-forming regions when strong pressure bumps are included and when the disk mass scales with stellar mass (case of $M_{\rm{disk}}=0.05\,M_\star$ in our models). This result arises from dust trapping and dust growth beyond centimeter-sized grains inside pressure bumps. However, the flatter relation of $M_{\rm{dust}}-M_{\star}$ for TDs and disks with substructures cannot be reproduced by the models unless the formation of boulders is inhibited inside pressure bumps. In the context of pressure bumps originating from planets, our results agree with current exoplanet statistics on giant planet occurrence increasing with stellar mass, but we cannot draw a conclusion about the type of planets needed in the case of low-mass stars. This is attributed to the fact that for $M_\star<1\,M_\odot$, the observed $M_{\rm{dust}}$ obtained from models is very low due to the efficient growth of dust particles beyond centimeter-sizes inside pressure bumps.