论文标题

学习何时信任在缩小状态空间中计划的动态模型

Learning When to Trust a Dynamics Model for Planning in Reduced State Spaces

论文作者

McConachie, Dale, Power, Thomas, Mitrano, Peter, Berenson, Dmitry

论文摘要

当系统的动态难以建模和/或耗时的评估,例如在可变形的对象操纵任务中,运动计划算法很难有效地找到可行的计划。此类问题通常会降低为状态空间,在这些空间中,动态可直接建模和评估。但是,这种减少通常会丢弃有关该系统的信息,以使计算效率受益,从而导致动力学对动作的结果不同意的情况。本文提出了一种用于在缩小状态空间中进行计划的公式,该公式使用分类器将计划者偏向于实际动力学下不可靠可靠的国家行动对。我们提出了一种生成和标记数据以训练这种分类器的方法,以及我们将框架应用于绳索操纵的应用,在该框架操纵中,我们将虚拟弹性频段(VEB)近似与真实的动态使用。我们对绳索操纵的实验表明,分类器在几种困难的情况下显着提高了基于RRT的计划者的成功率,这些情况旨在导致VEB在环境的关键部分中产生错误的预测。

When the dynamics of a system are difficult to model and/or time-consuming to evaluate, such as in deformable object manipulation tasks, motion planning algorithms struggle to find feasible plans efficiently. Such problems are often reduced to state spaces where the dynamics are straightforward to model and evaluate. However, such reductions usually discard information about the system for the benefit of computational efficiency, leading to cases where the true and reduced dynamics disagree on the result of an action. This paper presents a formulation for planning in reduced state spaces that uses a classifier to bias the planner away from state-action pairs that are not reliably feasible under the true dynamics. We present a method to generate and label data to train such a classifier, as well as an application of our framework to rope manipulation, where we use a Virtual Elastic Band (VEB) approximation to the true dynamics. Our experiments with rope manipulation demonstrate that the classifier significantly improves the success rate of our RRT-based planner in several difficult scenarios which are designed to cause the VEB to produce incorrect predictions in key parts of the environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源