论文标题

迭戈的核暗示性半层次定理

Diego's Theorem for nuclear implicative semilattices

论文作者

Bezhanishvili, Guram, Bezhanishvili, Nick, Carai, Luca, Gabelaia, David, Ghilardi, Silvio, Jibladze, Mamuka

论文摘要

我们证明,各种核含义的半纹身是局部有限的,因此概括了迭戈定理。我们证明的关键要素包括Modal Logic的着色技术和通用模型的构建。为此,我们为有限的核暗示性半纹身发展了二元性理论,从而概括了科勒二元性。我们证明,对于有限的核暗示性半纹身,提供了迭戈定理的替代证明,并提供了自由环状核含有的半层次的明确描述。

We prove that the variety of nuclear implicative semilattices is locally finite, thus generalizing Diego's Theorem. The key ingredients of our proof include the coloring technique and construction of universal models from modal logic. For this we develop duality theory for finite nuclear implicative semilattices, generalizing Köhler duality. We prove that our main result remains true for bounded nuclear implicative semilattices, give an alternative proof of Diego's Theorem, and provide an explicit description of the free cyclic nuclear implicative semilattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源