论文标题
卡西米尔不变歧管上的扰动等级2泊松系统和周期轨道
Perturbed rank 2 Poisson systems and periodic orbits on Casimir invariant manifolds
论文作者
论文摘要
应考虑一类N维泊松系统可还原为不受干扰的谐波振荡器。在这种情况下,应研究给定的符号叶片的扰动。我们的目的是分析与未扰动的谐波振荡器相关的时期的扰动,因此分析周期性轨道的分叉现象。这是通过平均理论达到扰动参数e中的任意顺序来实现的。在该理论中,我们还应同时使用平滑图的分支理论和奇异理论来分析隐式函数定理不适用的点处的分叉现象。当扰动由多项式家族给出时,使用基于gröbner的计算代数的相关函数是多项式的,以减少分析分析分支问题所需的某些多项式理想的发生者。当考虑使用二次扰动场对谐波振荡器的最一般扰动时,可以在参数空间中获得完整的分叉图(除较高的编构象子集除外)。给出了例子。
A class of n-dimensional Poisson systems reducible to an unperturbed harmonic oscillator shall be considered. In such case, perturbations leaving invariant a given symplectic leaf shall be investigated. Our purpose will be to analyze the bifurcation phenomena of periodic orbits as a result of these perturbations in the period annulus associated to the unperturbed harmonic oscillator. This is accomplished via the averaging theory up to an arbitrary order in the perturbation parameter e. In that theory we shall also use both branching theory and singularity theory of smooth maps to analyze the bifurcation phenomena at points where the implicit function theorem is not applicable. When the perturbation is given by a polynomial family, the associated Melnikov functions are polynomial and tools of computational algebra based on Gröbner basis are employed in order to reduce the generators of some polynomial ideals needed to analyze the bifurcation problem. When the most general perturbation of the harmonic oscillator by a quadratic perturbation field is considered, the complete bifurcation diagram (except at a high codimension subset) in the parameter space is obtained. Examples are given.