论文标题
使用术前的多模式MR图像的自动基于深度学习的工作流程,用于胶质母细胞瘤生存预测
An automatic deep learning-based workflow for glioblastoma survival prediction using pre-operative multimodal MR images
论文作者
论文摘要
我们提出了使用深度学习(DL)方法的胶质母细胞瘤(GBM)生存预测的全自动工作流程。包括285例神经胶质瘤(210 GBM,75个低级神经胶质瘤)患者。 163名GBM患者的总生存率(OS)数据。每个患者都有四个术前MR扫描,并手动绘制了肿瘤轮廓。对于自动肿瘤分割,使用122名神经胶质瘤患者对3D卷积神经网络(CNN)进行了训练和验证。训练有素的模型被应用于其余163名GBM患者,以产生肿瘤轮廓。分别使用明确设计的算法和预训练的CNN从自动室中提取手工制作和基于DL的放射线特征。 163名GBM患者被随机分为训练(n = 122),测试(n = 41)集用于生存分析。使用正则化技术的COX回归模型进行了培训,以构建手工制作和基于DL的特征。评估并比较了两个签名的预后能力。在163名GBM患者中,3D CNN的平均骰子系数为0.85,用于肿瘤分割。手工签名的C-指数为0.64(95%CI:0.55-0.73),而基于DL的签名达到了0.67(95%CI:0.57-0.77)的C-指数。与手工制作的签名不同,基于DL的签名成功将测试患者分为两组(P值<0.01,HR = 2.80,95%CI:1.26-6.24)。提出的3D CNN从四个MR图像中产生了准确的GBM肿瘤轮廓。与手工制作的签名相比,基于DL的签名在更高的C指数和明显的患者分层方面,可以更好地获得GBM的存活预测。提出的自动放射线工作流程证明了改善GBM患者患者分层和存活预测的潜力。
We proposed a fully automatic workflow for glioblastoma (GBM) survival prediction using deep learning (DL) methods. 285 glioma (210 GBM, 75 low-grade glioma) patients were included. 163 of the GBM patients had overall survival (OS) data. Every patient had four pre-operative MR scans and manually drawn tumor contours. For automatic tumor segmentation, a 3D convolutional neural network (CNN) was trained and validated using 122 glioma patients. The trained model was applied to the remaining 163 GBM patients to generate tumor contours. The handcrafted and DL-based radiomic features were extracted from auto-contours using explicitly designed algorithms and a pre-trained CNN respectively. 163 GBM patients were randomly split into training (n=122) and testing (n=41) sets for survival analysis. Cox regression models with regularization techniques were trained to construct the handcrafted and DL-based signatures. The prognostic power of the two signatures was evaluated and compared. The 3D CNN achieved an average Dice coefficient of 0.85 across 163 GBM patients for tumor segmentation. The handcrafted signature achieved a C-index of 0.64 (95% CI: 0.55-0.73), while the DL-based signature achieved a C-index of 0.67 (95% CI: 0.57-0.77). Unlike the handcrafted signature, the DL-based signature successfully stratified testing patients into two prognostically distinct groups (p-value<0.01, HR=2.80, 95% CI: 1.26-6.24). The proposed 3D CNN generated accurate GBM tumor contours from four MR images. The DL-based signature resulted in better GBM survival prediction, in terms of higher C-index and significant patient stratification, than the handcrafted signature. The proposed automatic radiomic workflow demonstrated the potential of improving patient stratification and survival prediction in GBM patients.