论文标题
关于跨语言序列标签中单词订单信息的重要性
On the Importance of Word Order Information in Cross-lingual Sequence Labeling
论文作者
论文摘要
单词顺序差异通常以不同的语言存在。在本文中,我们假设适合源语言单词顺序的跨语性模型可能无法处理目标语言。为了验证这一假设,我们调查使模型对源语言的单词顺序不敏感是否可以改善目标语言的适应性性能。为此,我们减少了用于序列编码器的源语言单词顺序信息,并观察性能变化。此外,基于此假设,我们提出了一种新方法,用于在下游跨语言序列标记任务中微调多语言BERT。关于对话自然语言理解,言论部分标记和命名实体识别任务的实验结果表明,减少安装在模型的单词顺序信息可以实现更好的零拍跨语言性能。此外,我们提出的方法也可以应用于强跨语言基线,并改善其性能。
Word order variances generally exist in different languages. In this paper, we hypothesize that cross-lingual models that fit into the word order of the source language might fail to handle target languages. To verify this hypothesis, we investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages. To do so, we reduce the source language word order information fitted to sequence encoders and observe the performance changes. In addition, based on this hypothesis, we propose a new method for fine-tuning multilingual BERT in downstream cross-lingual sequence labeling tasks. Experimental results on dialogue natural language understanding, part-of-speech tagging, and named entity recognition tasks show that reducing word order information fitted to the model can achieve better zero-shot cross-lingual performance. Furthermore, our proposed methods can also be applied to strong cross-lingual baselines, and improve their performances.