论文标题

倾斜表面下吊坠的形状

Shape of pendant droplets under a tilted surface

论文作者

De Coninck, J., Fernandez-Toledano, J. C., Dunlop, F., Huillet, T., Sodji, A.

论文摘要

对于吊坠滴的接触线是半径$ r_0 $的圆,我们得出关系$ mg \sinα= {π\ over2}γr_0\,(\cosθ^{\cosθ^{\ rm min} - \cosθ^{\ rm max}) $θ^{\ rm max} $是背面(上坡)的接触角,在前面(下坡),$ m $是滴剂的质量,$γ$是液体的表面张力。债券(或eötvös)的数字为$ bo = mg/(2R_0γ)$。倾斜角$α$可能会从$α= 0 $(无柄滴)增加到$α=π/2 $(固定在垂直壁上)到$α=π$(从天花板上掉落吊坠)。焦点将放在$α=π/2 $和$α=3π/4 $的吊坠上。下降曲线是在相同近似值中精确计算的。将结果与表面Evolver模拟进行比较,显示出良好的一致性约为$ = 1.2 $,例如,与半球形水滴相对应,高达$ 50 \,μ$L。还给出了每个接触角$θ^{\ rm min} $和$θ^{\ rm max} $的明确公式,并将其与几乎精确的表面Evolver值进行比较。

For a pendant drop whose contact line is a circle of radius $r_0$, we derive the relation $mg\sinα={π\over2}γr_0\,(\cosθ^{\rm min}-\cosθ^{\rm max})$ at first order in the Bond number, where $θ^{\rm min}$ and $θ^{\rm max}$ are the contact angles at the back (uphill) and at the front (downhill), $m$ is the mass of the drop and $γ$ the surface tension of the liquid. The Bond (or Eötvös) number is taken as $Bo=mg/(2r_0γ)$. The tilt angle $α$ may increase from $α=0$ (sessile drop) to $α=π/2$ (drop pinned on vertical wall) to $α=π$ (drop pendant from ceiling). The focus will be on pendant drops with $α=π/2$ and $α=3π/4$. The drop profile is computed exactly, in the same approximation. Results are compared with surface evolver simulations, showing good agreement up to about $Bo=1.2$, corresponding for example to hemispherical water droplets of volume up to about $50\,μ$L. An explicit formula for each contact angle $θ^{\rm min}$ and $θ^{\rm max}$ is also given and compared with the almost exact surface evolver values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源