论文标题

通用代数的隐藏子组问题

The Hidden Subgroup Problem for Universal Algebras

论文作者

Moore, Matthew, Walenczyk, Taylor

论文摘要

隐藏的亚组问题(HSP)是一个计算问题,包括特殊情况整数分解,离散对数问题,图形同构和最短的向量问题。著名的多项式时间量子算法用于分解和离散对数是Abelian群体对HSP的通用多项式时间量子解决方案的受限制版本,但是尽管有重点研究尚未发现完整的解决方案。我们建议将HSP的概括包括任意代数结构,并分析有关2元素代数的功能的新问题。我们证明了诸如量子拖动(即多项式时间),经典拖延,量子棘手且经典棘手的所有能力的完整分类。特别是,我们确定了一类代数,与经典计算机相比,广义HSP在量子计算机上表现出超级多项式速度。

The Hidden Subgroup Problem (HSP) is a computational problem which includes as special cases integer factorization, the discrete logarithm problem, graph isomorphism, and the shortest vector problem. The celebrated polynomial-time quantum algorithms for factorization and the discrete logarithm are restricted versions of a generic polynomial-time quantum solution to the HSP for abelian groups, but despite focused research no full solution has yet been found. We propose a generalization of the HSP to include arbitrary algebraic structures and analyze this new problem on powers of 2-element algebras. We prove a complete classification of every such power as quantum tractable (i.e. polynomial-time), classically tractable, quantum intractable, and classically intractable. In particular, we identify a class of algebras for which the generalized HSP exhibits super-polynomial speedup on a quantum computer compared to a classical one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源