论文标题

优化的功能空间学习,用于生成图像检索的有效二进制代码

Optimized Feature Space Learning for Generating Efficient Binary Codes for Image Retrieval

论文作者

Jose, Abin, Ottlik, Erik Stefan, Rohlfing, Christian, Ohm, Jens-Rainer

论文摘要

在本文中,我们提出了一种学习低维优化的特征空间,具有最小的类内方差和最大类间差异。我们通过照顾全球特征空间的全球统计数据来解决从神经网络中提取的特征向量的高维度问题。线性判别分析(LDA)的经典方法通常用于为单标记的图像生成优化的低维特征空间。由于图像检索涉及多标签和单标记的图像,因此我们利用LDA和规范相关分析(CCA)之间的等效性为单标记图像生成优化的特征空间,并使用CCA来生成优化的特征空间,以用于多标记图像。我们的方法将基于CCA的网络体系结构中的特征向量与标签向量相关联。神经网络最大程度地减少了损失函数,从而最大化相关系数。我们通过流行的迭代量化(ITQ)方法将生成的特征向量二重化,并提出了一个集合网络,以生成所需的位长度的二进制代码以进行图像检索。我们对平均平均精度的测量显示了其他最先进的单标签和多标签图像检索数据集的竞争结果。

In this paper we propose an approach for learning low dimensional optimized feature space with minimum intra-class variance and maximum inter-class variance. We address the problem of high-dimensionality of feature vectors extracted from neural networks by taking care of the global statistics of feature space. Classical approach of Linear Discriminant Analysis (LDA) is generally used for generating an optimized low dimensional feature space for single-labeled images. Since, image retrieval involves both multi-labeled and single-labeled images, we utilize the equivalence between LDA and Canonical Correlation Analysis (CCA) to generate an optimized feature space for single-labeled images and use CCA to generate an optimized feature space for multi-labeled images. Our approach correlates the projections of feature vectors with label vectors in our CCA based network architecture. The neural network minimize a loss function which maximizes the correlation coefficients. We binarize our generated feature vectors with the popular Iterative Quantization (ITQ) approach and also propose an ensemble network to generate binary codes of desired bit length for image retrieval. Our measurement of mean average precision shows competitive results on other state-of-the-art single-labeled and multi-labeled image retrieval datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源